Analyse dimensionnelle Pour pister les erreurs et calculer vite
Analyse dimensionnelle Connaître : le N le J, Les unités élémentaires, kg, m, K, s, A. Utiliser les unités dans les formules comme des symboles de grandeurs.
Exercice Donner la dimension de R, constante des gaz parfaits. Montrer que le produit pV (pression .volume) a la dimension d’une énergie. Donner l’unité décomposée d’une force, Donner l’unité décomposée d’une force, d’un moment cinétique de formuleDonner une équation aux dimensions d’un champ électrique défini par la relation ou est la force électrique, le champ électrique, et la charge soumise à la force. En utilisant le fait qu’une puissance en W est le produit d’une tension par une intensité, retrouver que le champ E peut s’exprimer comme une tension divisée par une distance. Donner une équation de dimension de la constante ε0 diélectrique définie par la formule (où E est un champ électrique voir question précédente Q une charge électrique, S une surface)
Exercice Donner la dimension de k constante diélectrique version Lycée, partir de la force d’interaction électrique.
Exercice En utilisant la force de Laplace et le champ d’une bobine, trouver de même la dimension de la constante μ0 Montrer que l’on peut avec k et μ0 former un nombre ayant la dimension d’une vitesse au carré.
Exercice suite Donner l’unité décomposée d’une force, Donner l’unité décomposée d’un moment cinétique de formule L=mVxR Donner une équation aux dimensions d’un champ électrique défini par la relation ou F est la force électrique, E le champ électrique, et q la charge soumise à la force.
Exercice En utilisant le fait qu’une puissance en W est le produit d’une tension par une intensité, retrouver que le champ E peut s’exprimer comme une tension divisée par une distance. Donner une équation de dimension de la constante ε0 diélectrique définie par la formule (où E est un champ électrique voir question précédente Q une charge électrique, S une surface)