Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parRobin Olivier Modifié depuis plus de 8 années
1
Les objectifs de connaissance : Les objectifs de savoir-faire : - La lumière présente des aspects ondulatoire et particulaire ; - On peut associer une onde à une particule (relation de De Broglie) ; - Transferts d’énergie (émissions spontanée et stimulée d’énergie) ; - Aspect probabiliste de certains phénomènes quantiques ; - Fonctionnement du LASER et propriétés. - Identifier des situations physiques où le caractère ondulatoire de la matière est significatif ; - Identifier des situations physiques où le caractère corpusculaire de la matière est significatif. Thème : COMPRENDRE Domaine : Énergie, matière et rayonnement Livre : Chapitre 15 Transferts quantiques d’énergie, Dualité onde – particule Thème : COMPRENDRE Domaine : Énergie, matière et rayonnement Livre : Chapitre 15 Transferts quantiques d’énergie, Dualité onde – particule
2
1. Onde ou particule ? 1.1. Aspect ondulatoire de la lumière Dans son « Traité de la lumière », Christian Huygens interprète la lumière comme une la propagation d’une onde. Deux siècles plus tard, James Clerk Maxwell introduit la théorie de la propagation des ondes électromagnétiques. La lumière devient alors un cas particulier d’ondes électromagnétiques de longueurs d’ondes comprises entre 380 nm et 780 nm. Les phénomènes de diffraction ou d’interférences sont des manifestations du comportement ondulatoire de la lumière. Diffraction des ondes lumineusesInterférences de deux ondes lumineuses 1.2. Aspect corpusculaire de la lumière L’effet photoélectrique : Le début du XX eme siècle est marqué par la naissance de la théorie de la relativité restreinte en 1905 puis par celle de la relativité générale en 1915, par Albert Einstein, et enfin par celle de la mécanique quantique dans les années 20. En 1905, il postule que la lumière transporte de l’énergie sous la forme d'un flux de particules. Il explique ainsi l'effet photoélectrique (ci-contre), phénomène par lequel certains matériaux émettent des électrons sous l’action de rayons lumineux à certaines fréquences, mis en évidence par l’allemand Heinrich Hertz en 1887 : en s’appuyant sur les travaux de Max Planck (étude du rayonnement du corps noir), il explique que la lumière est formée de « quanta » (qu’on appellera plus tard (1926) des « photons »), sorte de grains d’énergie qui, en fonction de la fréquence du rayonnement, provoque l’émission de ces électrons.
3
L'énergie E, appelée quantum d’énergie, portée par un photon appartenant à une onde électromagnétique monochromatique est donnée par la relation : L’effet Compton : En 1922, Arthur Holly Compton étudie la diffusion des rayons X par une mince feuille de graphite, il constate que les rayons X diffusés ont une longueur d’onde plus grande que les rayons X incidents et que des électrons sont chassés de la feuille de graphite. Il interprète cette expérience comme une collision d’un photon avec un électron du graphite et en déduit que, comme prévu par Einstein, les rayons X se comportent comme des particules. Cette expérience est interprétée comme une collision, dite élastique, entre un photon et un électron : après la collision, le photon voit son énergie diminuer au profit de l'électron.
4
La lumière se comporte tantôt comme une onde, tantôt comme une particule : ce sont les conditions de l’expérience qui orientent son comportement. Pour désigner ce double comportement, on utilise l’expression de « dualité onde-particule ». A RETENIR : 1.3. Particules matérielles et onde de matière En 1923, alors que les scientifiques ont prouvé que la lumière peut se comporter comme une onde ou comme une particule, Louis De Broglie émet l’hypothèse que l’on peut associer une onde à des particules matérielles comme les électrons ou les photons : en 1924, il propose de généraliser la dualité onde-particule, admise pour la lumière, à tous les objets microscopiques, il émet ainsi l'hypothèse que ce double comportement est observable chez tous les objets microscopiques de la matière (électrons, protons, neutrons...). Cette hypothèse est confirmée en 1927. Définition : À chaque particule en mouvement est associée une onde de matière de longueur d’onde, liée à la quantité de mouvement p de la particule par la relation de De Broglie :
5
A RETENIR : Les objets microscopiques de la matière (électrons, protons...) présentent, comme la lumière, un double aspect ondulatoire et particulaire. Remarques : - La valeur de la quantité de mouvement d’un photon peut alors s’exprimer par la relation suivante : - Le comportement ondulatoire des objets microscopiques est significatif lorsque la dimension a de l'obstacle (ou de l'ouverture) est du même ordre de grandeur que la longueur d'onde de matière λ. 1.4. Aspect probabiliste des phénomènes quantiques Définition : Les phénomènes quantiques sont les phénomènes où interviennent des objets microscopiques de la matière et qui ne s'expliquent pas par les lois classiques de la physique.
7
2. Transferts quantiques d’énergie En 1913, Niels Bohr introduit l’idée qu’un atome ne peut exister que dans certains états d’énergie bien définis, caractérisés par un niveau d’énergie. Dans son état fondamental l’atome est dans son état d’énergie le plus bas. Les autres états sont dits états excités. 2.1. Émission spontanée (Rappels de 1 ère S) Un atome excité (par décharge électrique, par chauffage, absorption de lumière, etc.) retourne spontanément à son état fondamental ou a un état excité d’énergie plus faible en émettant un photon qui emporte l’énergie cédée par l’atome lors de la transition. - Un atome dans un état d’énergie E inf peut absorber un photon d’énergie E s’il possède un niveau d’énergie supérieur E sup tel que :
8
- En passant d’un état excité d’énergie E sup à un état d’énergie plus faible E inf, un atome émet un photon d’énergie :
9
A RETENIR : - Comme tous les atomes possèdent des niveaux d’énergie bien définis, ils ne peuvent absorber que certains photons de longueur d’onde bien précise : l’émission spontanée est donc quantifiée. - La longueur d’onde du photon émis est alors : - Dans le processus d’émission spontanée, le photon est émis dans une direction aléatoire. 2.2. Émission stimulée En 1917, Albert Einstein prévoit un autre mode d'émission de lumière : l'émission stimulée. Un photon incident d'énergie choisie E = h ν peut forcer un atome, initialement dans l'état excité d'énergie E sup, à passer à un état d'énergie inférieur E inf plus stable. Ce passage s'accompagne de l'émission d'un photon de même énergie, de même direction, de même sens de propagation et de même phase que le photon incident. A RETENIR : Lorsqu’un photon d’énergie E = E sup – E inf rencontre un atome dans un état excité E sup, cet atome peut retrouver un état d’énergie plus stable E inf en émettant un photon de même énergie E = E sup – E inf. Ce mode d’émission de lumière est appelé l’émission stimulée.
10
2.3. Domaines spectraux Il existe différents types de transitions énergétiques dans la matière conduisant à des gammes d’énergies émises ou absorbées très différentes : 3. Le LASER Le mot LASER est un acronyme anglais : « Light Amplification by Stimulated Emission of Radiation ». En français : « amplification lumineuse par émission stimulée de rayonnement ».
11
La lumière laser est produite par émission stimulée. 3.1. Principe du LASER Le pompage optique (inversion de population) : Lorsqu’une radiation de fréquence, telle que h = E 2 – E 1, traverse un milieu dont les atomes sont dans l’état excité E 2, elle provoque la désexcitation des atomes par émission stimulée. L’énergie des atomes est ainsi transférée à l’onde incidente dont l’énergie se trouve amplifiée. Le milieu traversé par l’onde, appelé milieu actif, constitue alors un amplificateur de lumière. Pour que l’amplification soit possible, il faut qu’il y ait beaucoup plus d’atomes dans un état excité que dans l’état fondamental (qui absorbent les photons). Pour cela, on réalise une inversion de population, effectuée par pompage : un excitateur, une décharge électrique ou un faisceau lumineux (on parle alors de pompage optique), excite les atomes qui passent du niveau fondamental E 1 à un niveau excité E 3, légèrement supérieur à E 2. Les atomes du niveau 3 peuplent le niveau 2 en se désexcitant très rapidement ce qui réalise l’inversion de population. La cavité résonante (amplification) :
12
Pour amplifier davantage l’onde, on peut lui faire parcourir un très grand nombre d’aller- retour dans le milieu actif. Pour cela, on réalise une cavité résonante à l’aide de deux miroirs : l’un est un miroir sphérique (concave) et l’autre est un miroir semi-transparent pour transmettre à l’extérieur de la cavité une partie de la lumière. L’ensemble constitue l’oscillateur laser. 3.2. Propriétés du LASER - La couleur d’un laser est celle qui correspond à la fréquence des photons émis lors de la désexcitation stimulée des atomes de la cavité optique. Cette fréquence étant unique : un faisceau laser est donc monochromatique ; - Du fait de l’émission stimulée, ces photons sont aussi en phase, donc : un laser produit un faisceau lumineux cohérent ; - Dans la cavité optique, la lumière va dans une seule direction, bien perpendiculaire aux miroirs. A l'inverse d'une ampoule, qui éclaire un peu partout (faisceau divergeant), le laser produit un faisceau très directif ; - La lumière étant très amplifiée, la puissance lumineuse d’un laser est concentrée sur une petite surface, même à grande distance de la source. Exercices : n°18 p392, n°28 p395 ( AP)
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.