Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parRose Gascon Modifié depuis plus de 8 années
1
Paul Colas, CEA/Irfu
2
Groupe SPP/ILC P. Colas, M. Titov (temps partiel) M. Besançon, C. Royon (temps très partiel) P. Lutz (retraité) Etudiants: W. Wang (9/2009-7/2013) Soutenance le 24/6/2013 A. Chaus (10/2011-9/2014, avec DESY) D. Battacharya (6/2013-2016 avec SINP, Kolkata) Actions Etudes de physique (H self coupling, 8-jet, extra-dim, H BR indép. du modèle) R&D détecteur: TPC Micromégas à anode résustive, et MAPs (CMOS Active Pixels pour détecteur de vertex, continuation dans ALICE (SPhN+SEDI), TimePix avec Orsay, Bonn, Nikhef Suivi politique ILC (France, Europe, autres régions). Contribution ILD/LOI, DBD. Tout cela avec des moyens extrêmement restreints, grâce à de fortes synergies avec SEDI, SACM, SIS et de nombreux financements extérieurs (EUDET/AIDA, CEFIPRA, Canada) Initiative depuis 2011 : ‘Club Physics case’, réunion transverse sur les sujets de physique traités ailleurs (LHC, Matière noire,…) et qui peuvent avoir des conséquences sur le Physics Case. Suivi de l’évolution. 13/05/2013LC studies at Saclay2
3
ILD SUPERCONDUCTING MAGNET 3 parts - SC solenoid (SACM) - SC anti DID (SACM) - Yoke (DESY) Main parameters SC solenoid - nominal field: 3.5 T - design field: 4 T - warm bore: 3.44 m - length: 7.35 m At 4 T - max. field on conductor: 4.6 T - current: 22.4 kA - stored energy: 2.3 GJ - density of stored energy: 13 kJ/kg Anti -DID - max. dipole field: 0.035 T - inner radius: 4.16 m - total length: 6.8 m F. Kircher, SACM
4
Anti DID 13/05/2013LC studies at Saclay4
5
Autres points Costing (avec LLR: H. Videau, C. Clerc): 131 kILCU Développement conducteur renforcé (CERN): en cours (d’après B. Curé, CERN) Note LC-DET 2012-008 (avec CERN et DESY): pour avril 2013 Mesures magnétiques: développement à envisager 13/05/2013LC studies at Saclay5
6
Perspectives ILC au Japon seule piste envisageable en ce moment (ou plus tard Chine, Inde, Qatar?...) Etapes en vue: Déclaration du gouvernement japonais, en réponse à la statégie européenne (imminent) Réorganisation US dans cette direction et P5 (en cours) Décision japonaise sur le site: janvier 2016. Date pivot où tout peut commencer, après les premiers résultats à LHC 13 TeV. En attendant: réflexion très ouverte sur toutes les possibilités, lors de réunions d’information et de discussion 13-14 mai avec l’IN2P3 (M. Besançon) Fin mai : LCTPC à DESY 12 juin : ‘June event’ : passage à la nouvelle organisation Septembre: Irfu LC day (M. Titov et al.) 13/05/2013LC studies at Saclay6
7
13/05/20137 Saclay, October 19, 2012 To: Philippe Chomaz Director of Irfu Member of the European Strategy Group CEA Saclay Subject : Support from Irfu physicists to a fast track scenario for building a global LC Dear Philippe Chomaz, As you know, recently two major events have occurred which greatly comfort a long range activity of various components of our Institute preparing in view of an e+e- Linear Collider program: The observation at LHC of a new particle with properties compatible with those of the Higgs boson, The indications that Japan considers bidding for hosting the Linear Collider, as a global project: two Japanese sites are officially under study, following a dedicated funding granted at the end of last year. These two events are of strategic importance: they allow for a timely construction of a LC for the middle of the next decade. We therefore believe that every action should be taken at the European level to favour this unique opportunity to reach far deeper in the understanding of the Physical laws of the Universe. LC studies at Saclay
8
13/05/20138 Saclay, October 19, 2012 …/… We consider that it is of prime importance to have a significant contribution of the European HEP community to this global project at the energy frontier, without jeopardizing the upgrade of the proton collider at CERN. We welcome and support CERN's willingness to participate to projects at the Energy Frontier even when these projects fall outside Europe, provided they are of a global nature. In this context, CERN should play a central role for the European contribution to the project. We should also recall that the long lasting effort of the world LC community shows a right state of readiness for launching such a project. Therefore, we believe that the European Strategy for particle Physics should embrace this opportunity and give the highest priority in helping the LC project to materialize in Japan, as early as possible. Signatories: D. Attié, M. Besançon, P. Colas, F. Couderc, F. Deliot, I. Giomataris, G. Hamel de Monchenault, P. Lutz, O. Napoly, C. Royon, M. Titov, B. Tuchming Note: this text is largely inspired from the letter addressed by the French ILC community (IN2P3 and Irfu). LC studies at Saclay
9
13/05/2013 L: 4.7m : 3.6m Design for an ILD TPC in progress: Each endplate: 80 modules with 8000 pads Spatial Resolution (in a B=3.5T magnetic field): δ(x) ~ 100 μm for the full 2.3 m drift ILD-TPC for ILC 9 ILD LC studies at Saclay
10
13/05/201310 Large Prototype-TPC (LP-TPC) Magnet up to 1.2T Field cage: 61 cm length and 72 cm diameter 7 interchangeable modules with keystone shape LC studies at Saclay
11
13/05/201311 MPGD: Micromegas & GEM Several types of readout modules are studied ReadoutPad Size ElectronicsGroups MPGDs Double GEMs (Laser-etched) (~ 1 × 6 mm 2 Pad) ALTRO Asia Triple GEMs (wet-etched) Desy Micromegas (Resistive anode) (~ 3 × 7 mm 2 Pad) AFTER Saclay- Carleton Micromegas (test with 7 modules) GEM (test with 3 modules) LC studies at Saclay
12
pads mesh E B resistive foil glue pads mesh E B Pad width limits MPGD TPC resolution Direct signal readout technique : pad width 0 : resolution at Z=0 without diffusion Charge dispersion technique with a resistive anode so that wide pads can be used for centroid determination Micromegas with Resistive Anode 13/05/201312LC studies at Saclay
13
13/05/201313 Micromegas module Module size: 23 cm × 17 cm 24 rows × 72 columns Readout: 1726 Pads Pad size: ~3 mm × 7 mm LC studies at Saclay
14
13/05/201314 Resistive ink ~3 MΩ/□ Resistive Kapton ~5 MΩ/□ Standard Resistive Kapton ~3 MΩ/□ Micromegas modules LC studies at Saclay
15
Z=5cm Z=35cm Z=50cm Mean Residual vs Row Number Z-independent distortions Distortions up to 50 microns for resistive ink (blue points) Rms 7 microns for CLK film (red points) 15 Uniformity 13/05/2013 Row Number LC studies at Saclay
16
13/05/201316 Beam test 2008~2011: Test with one module T2K electronics (32cm × 25cm × 14cm ) 2012~2013: Test with multi-modules Integrated electronics ( 23cm × 17cm × 5cm ) Fully integrated Module Resistive Micromegas Detector FEC FEM LC studies at Saclay
17
13/05/201317 Event display 2D or 3D display software available Online monitor Offline monitor LC studies at Saclay
18
13/05/201318 Drift Velocity Test in 2009 (B=0T): -T2K gas: Ar:CF4:iso=95:3:2 -T=19 o C - P = 1035hPa -H2O:35ppm At E=230 V/cm : V drift = 7.698 +- 0.040 cm/µs (Magboltz : 7.583+-0.025(gas comp.)) The difference is 1.5+-0.6 % LC studies at Saclay
19
13/05/201319 Gain Study For 6.84 mm pitch and 5 GeV e- Expectations for Ntot: 61.9 (from HEED simulation) ADC Gain LC studies at Saclay
20
13/05/201320 Test bench Energy Resolution :~13% rms Gain ~2600 (using collimated source, Vmesh=380V) The 55 Fe source is put in an aluminum collimation tube and fixed on a set of two mechanical arms (X-Y). LC studies at Saclay
21
13/05/201321 Spatial resolution Event selection Select events with exactly 1 track LC studies at Saclay
22
13/05/201322 Spatial resolution X (mm) (a) Fit track with all rows (b) Fit track without using hit in row 35 (c) Fit track after selection hits (row 35) Hits selection Row number LC studies at Saclay
23
13/05/201323 Spatial resolution B=1 T C d = 94.2 µm/√cm (Magboltz) LC studies at Saclay
24
13/05/201324 Compare with GEM ( Spatial resolution ) LC studies at Saclay
25
13/05/201325 Field distortions B=1T B=0T After alignment B=0T LC studies at Saclay
26
13/05/201326 Field distortions Distortions at different drift distances in B=0T or B=1T B=1T B=0T LC studies at Saclay
27
13/05/201327 Conclusion A lot of experience has been gained in building and operating Micromegas TPC panels. The characteristics of the Micromegas modules, such as the uniformity, energy resolution, stability have been studied in detail. 7 modules have been successfully tested with full integration of the electronics at the same time. 9 modules have been manufactured and characterized in a quasi-industrial process. Thanks to the resistive technology, the measured resolution is about 60 microns at zero drift distance with 3 mm wide pads. This meets ILC needs. Distortions are observed. Their detailed study will allow to correct them and improve the design to minimize them. LC studies at Saclay
28
13/05/201328LC studies at Saclay
29
13/05/201329 Disconnected Pads LC studies at Saclay
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.