La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

SuperNEMO Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) et CENBG, Université Bordeaux 1 CNRS/IN2P3 Marseille 21 avril 2010.

Présentations similaires


Présentation au sujet: "SuperNEMO Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) et CENBG, Université Bordeaux 1 CNRS/IN2P3 Marseille 21 avril 2010."— Transcription de la présentation:

1 SuperNEMO Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) et CENBG, Université Bordeaux 1 CNRS/IN2P3 Marseille 21 avril 2010

2  Physique du neutrino et double désintégration bêta  NEMO 3  SuperNEMO Plan

3 - Nature du neutrino : Dirac (  ) or Majorana ( = ) - Masse absolue du neutrino et hiérarchie des masses - Interaction par courant droit - Violation de CP dans le secteur leptonique - Recherche supersymétrie et nouvelles particules Double désintégration bêta sans neutrino - Non-conservation du nombre leptonique

4 Propriétés du neutrino Atmosphériques (SK) Accélérateurs (K2K,Minos) Réacteurs (CHOOZ) Accélérators (JPARC) Solaires (SNO, SK) Réacteurs (KamLAND)  tan 2  23 =1.0 ± 0.3 sin 2 2  13 < 0.16 tan 2  12 =0.39 ± 0.05  CP = CP phase de Dirac U  : CP pahse Majorana  m 2 atm =  m 2 31 = (2.3  0.2 ) 10 -3 eV 2  m 2 sol =  m 2 12 = (7.9  0.3) 10 -5 eV 2 Oscillations

5 Neutrino mass Bêta simple m v =  |U ei | m i <2.3 eV Double bêta | | = |  U ei m i | < 0.2 - 0.8 eV Cosmologie  m i = m 1 +m 2 +m 3 <~1 eV Masse absolue ? m2m2 m12m22m32m12m22m32 Dégénérée m 1 ≈m 2 ≈m 3 » |m i -m j | Normale m 3> >> m 2 ~m 1 Inversée m 2 ~m 1 >>m 3 ? Hiérarchie ? 2 2 2 1/2

6 Décroissance double bêta Processus au 2nd ordre de l’interaction faible Déjà observé pour plusieurs noyaux  Bêta simple interdite (énergie) ou fortement supprimée Décroissance possible vers l’état fondamentale ou les états excités  e-e- e-e-   e-e- e-e-  L =2   Majorana neutrino ( = )

7 Courant (V+A),, (A,Z) (A,Z+2) + 2 e - Processus: paramètres T 1/2 = F(Q ,Z) |M| 2 2 Phase space factor Nuclear matrix element Effective mass: = m 1 |U e1 | 2 + m 2 |U e2 | 2.e i  1 + m 3 |U e3 | 2.e i  2 |Uei|: mixing matrix element  1 et  2: Majorana phase 5 Exchange neutrino léger Emission de Majoron(s) SUSY ’ 111, ’ 113 ’ 131,….. T 1/2 = F |M J | 2 2 Phase space factor Nuclear matrix element Coupling between Majoron and neutrinos R-parity violation T 1/2 depends on ( ’ 111 ) 2, gluino and squarks mass Neutrinoless Double Beta decay Découverte implique  L=2 and neutrino de Majorana

8  :les observables Electron energy sum Arbitrary unit Q     Summed electron energy (normalized to Q  )

9  les observables Light neutrino exchange Right-handed current Cos  Energy difference From G. Gratta

10 Masse effective et oscillations de neutrinos Hiérarchie inverse Hiérarchie normale Dégénéree Dégénérée: peut être testée (~10 kg) Inversée: testée par la prochaine génération d’expérience  kg  Hiérarchie normale: inaccessible actuellement (~1 tonne) in eV Klapdor claim

11 IsotopeQ  (MeV) abondance isotopique (%) G 0 (an -1 ) x 10 25 48 Ca4.2710.1872.44 76 Ge2.0407.80.24 82 Se2.9959.21.08 96 Zr3.3502.82.24 100 Mo3.0349.61.75 116 Cd2.8027.51.89 130 Te2.52833.81.70 136 Xe2.4798.91.81 150 Nd3.3675.68.00 Emetteurs 

12 Des améliorations mais encore des incertitudes pour extraction de Eléments de matrice nucléaire Shell Model - QRPA Calculs QRPA T 1/2 = F(Q ,Z) |   | 2 2 5

13 >.. AA M. t N Bckg.  E ln2. N k C.L. (y) Techniques expérimentales Aucune technique ne peut optimiser tous ces paramètres M: masse (g)  : efficacité » K C.L. : Confidence level N: Avogadro number t: temps (an) N Bckg : bruit de fond (keV -1.g -1.an -1 )  E: Résolution en énergie (keV) Calorimètre Semi-conducteurs Bolomètres Source = détecteur ,  E     Calorimètre Scintillateur (chargé) Source = détecteur ,  Tracko-calo Source  detector N Bckg, choix isotope Xe TPC Source = détecteur   ,M, (N Bckg )   Avec bruit de fond:

14 Calorimètre vs Tracko-calo  Tracko-calo Réjection des fonds Modeste énergie résolution keV MeV Calorimètre Résolution en énergie Modeste réjection des fonds

15 Une difficulte la radioactivite naturelle Sélection de tous les matériaux entre 10 3 et 10 6 fois moins radioactifs que les matériaux standard Radioactivité naturelle: principal bruit de fond

16 Radioactivité naturelle ( 40 K, 60 Co, 234m Pa, 214 Bi and 208 Tl externe…) 214 Bi et Radon 208 Tl (2.6 MeV  line) et Thoron  venant des réactions (n,  ) et bremstrahlung des muons Q  MeV 2 34 76 Ge 130 Te 76 Xe 100 Mo 82 Se 5 150 Nd 96 Zr 48 Ca Q  et composantes de bruit de fond +  pour tracko-calo or calorimètre avec une modeste résolution en énergie + spécifique fonds pour les calorimètre Contamination de surface ou de volume en émetteurs  Production de cosmogénique

17 Experiments Isotopes TechniquesMain caracteristics NEMO3 100 Mo, 82 Se Tracking + calorimeterBckg rejection, isotope choice SuperNEMO 82 Se, 150 Nd Tracking + calorimeterBckg rejection, isotope choice Cuoricino 130 Te BolometersEnergy resolution, efficiency CUORE 130 Te BolometersEnergy resolution, efficiency GERDA 76 Ge Ge diodesEnergy resolution, eficiency Majorana 76 Ge Ge diodesEnergy resolution, efficiency COBRA 130 Te, 116 Cd ZnCdTe semi-conductorsEnergy resolution, efficiency EXO 136 Xe TPC ionisation + scintillationMass, efficiency, final state signature MOON 100 Mo Tracking + calorimeterCompactness, Bckg rejection CANDLES 48 Ca CaF 2 scintillating crystalsEfficiency, Background SNO++ 150 Nd Nd loaded liquid scintillatorMass, efficiency XMASS 136 Xe Liquid XeMass, efficiency CARVEL 48 Ca CaWO4 scintillating crystalsMass, efficiency Yangyang 124 Sn Sn loaded liquid scintillatorMass, efficiency DCBA 150 Nd Gazeous TPCBckg rejection, efficiency  : un domaine dynamique

18 3 m 4 m B (25 G) 20 sectors Source : 10 kg of  isotopes cylindrical, S = 20 m 2, 60 mg/cm 2 Tracking detector : drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter : 1940 plastic scintillators coupled to low radioactivity PMTs Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water + Wood Fréjus Underground Laboratory : 4800 m.w.e. Background: natural radioactivity, mainly 214 Bi et 208 Tl (  2.6 MeV) Radon, neutrons (n,  ), muons,  Able to identify e , e ,  and  NEMO 3 detector

19 Feuilles Sources  Scintillateurs PM Tube d’étalonnage Anneau cathodique de la chambre à fils Un secteur de NEMO3

20 NEMO 3 NEMO 3 detector

21 116 Cd 405 g Q  = 2805 keV 96 Zr 9.4 g Q  = 3350 keV 150 Nd 37.0 g Q  = 3367 keV 48 Ca 7.0 g Q  = 4272 keV 130 Te 454 g Q  = 2529 keV nat Te 491 g Cu 621 g 2  decay measurement External background measurement 100 Mo 6.914 kg Q  = 3034 keV 0  decay search 82 Se 0.932 kg Q  = 2995 keV & All sources produced by centrifugation in Russia NEMO 3 sources

22 Deposited energy: E 1 + E 2 = 2088 keV Internal hypothesis: (  t) mes – (  t) theo = 0.22 ns Common vertex: (  vertex)  = 2.1 mm (  vertex) // = 5.7 mm Run Number: 2040 Event Number: 9732 Date: 2003-03-20 100 Mo foils Scintillator + PMT Longitudinal view Transverse view Vertex of the e  e  emission Criteria to select  events: 2 tracks with charge < 0 2 PMTs, each > 200 keV PMT-Track association Common vertex Internal hypothesis TOF (external event rejection) No other isolated PMT (  rejection) No delayed  track ( 214 Bi rejection) NEMO3 typical  event NEMO 3  typical event

23 NEMO-3 can measure each component of the background 208 Tl impurities inside the foils ~ 60  Bq/kg Measured with (e ,2 , (e ,3  events coming from the foil ~ 0.06  -like events year  1 kg  1 with 2.8<E 1  E 2 <3.2 MeV External Neutrons and High Energy gamma Measured with (e ,e  ) int or (e +,e - ) events with E 1  E 2  4 MeV  0.02  -like events year  1 kg  1 with 2.8<E 1  E 2 <3.2 MeV External Background 208 Tl (PMTs) Measured with (e ,  ) external events ~ 10  3  -like events year  1 kg  1 with 2.8<E 1  E 2 <3.2 MeV 100 Mo  decay T 1/2 = 7.14 10 18 y ~ 0.3  -like events year  1 kg  1 with 2.8<E 1 +E 2 <3.2 MeV 214 Bi impurities inside the foils Measured with (e ,  events coming from the foil, dominated by radon in first period Radon supressed since December 2004, measument in progress. Limits from Ge: A( 214 Bi)< 400  Bq/kg < 0.1  -like events year  1 kg  1 with 2.8<E 1  E 2 <3.2 MeV

24 Angular distribution 219 000 events 6914 g 389 days S/B = 40 NEMO-3 100 Mo Energy sum spectrum 219 000 events 6914 g 389 days S/B = 40 NEMO-3 100 Mo Background subtracted Data 2  2 Monte Carlo Data 2  2 Monte Carlo Background subtracted «  factory» → tool for precision test T 1/2 (  ) = 7.11  0.02 (stat)  0.54 (syst)  10 18 yr 12000 10000 8000 6000 4000 2000 0 Phys. Rev. Lett. 95 182302 (2005) 7.6 kg.yr NEMO 3: 100 Mo  2 results

25 E 1 + E 2 (MeV) 133 events S/B 6.76 948 days 7g 48 Ca 150 Nd 925 days S/B 1.01 9.41g 932 g, 389 days 2750 events S/B = 4 82 Se NEMO-3 454 g, 534 days 109 events S/B = 0.25 130 Te NEMO-3 96 Zr 2.8 ± 0.1 (stat) ± 0.3 (sys) 10 19 a E 1 + E 2 (MeV) 7.6 ± 1.5 (stat) ± 0.8 (sys) 10 20 a 2.3 ± 0.2 (stat) ± 0.3 (sys) 10 19 a 9.11 +0.25 -0.22 (stat) ± 0.63 (sys) 10 18 a 4.4 +0.5 -0.4 (stat)± 0.4 (sys) 10 19 a 9.6 ± 0.3 (stat) ± 1.0 (sys) 10 19 a Résultats  : autres isotopes NEMO-3  autres résultats

26 NEMO 3: 100 Mo  2 results

27 Pauli exclusion principle violated by neutrino Proposed by Dolgov and Smirnov in 2005 Neutrino would partially obey to Bose-Einstein Statistics and new parameter sin  is introduced to take this effect into account Effects could be measured on decay rates, energy and angular distribution in particular for  Only tracko-calo are able to do it Effect on  spectrum of 100 Mo Effect on single energy spectrum of 100 Mo Results of NEMO3 used in Nucl. Phys. B783: 90-111, 2007 sin  <0.6

28

29

30 7 kg 100 kg isotope mass M 8 % ~ 30 % isotope 100 Mo 82 Se, 150 Nd or 48 Ca T 1/2 (  ) > ln 2  M    T obs N 90 N A A  NEMO-3 SuperNEMO internal contaminations 208 Tl and 214 Bi in the  foil 208 Tl: < 20  Bq/kg 214 Bi: < 300  Bq/kg 208 Tl <  Bq/kg if 82 Se: 214 Bi < 10  Bq/kg T 1/2 (  ) > 2 x 10 24 y < 0.3 – 1.3 eV T 1/2 (  ) > 10 26 y < 50 meV energy resolution (FWHM) 8% @ 3MeV4% @ 3 MeV efficiency  From NEMO-3 to SuperNEMO… challenges

31 USA MHC INL U Texas Japan U Saga U Osaka U. Fukui U. Tokushima KEK France CEN Bordeaux IReS Strasbourg LAL ORSAY LPC Caen LSCE Gif/Yvette UK UCL U Manchester Imperial College Russia JINR Dubna ITEP Mosow Ukraine INR Kiev Czech Republic Charles U Praha IEAP Praha Slovakia Comemius U. Academy of sciences Slovak technical U. ~ 80 physicists, 10 countries, 28 laboratories Spain U Valencia U Saragossa U Barcelona SuperNEMO collaboration South Korea KAERI Daejong

32 20 modules for 100 kg Top view Source (40 mg/cm 2 ) 12m 2 Tracking (~2-3000 Geiger cells). Calorimeter (600 channels) 5 m 1 m Total:~ 40 000 – 60 000 geiger cells channels ~ 12 000 PMT SuperNEMO conceptual design Module 0 : 7 kg of 82 Se < 0.2 – 0.5 eV (1 year of data)

33

34 SuperNEMO Sources Guideline: 82 Se - Can be produced by centrifugation - Already 5 kg in the collaboration - (3,5 kg from ILIAS, 1 kg in NEMO3, 0,5 from ITEP) - 2,5 kg more will be provided by Russian groups - No problem to order 100 kg - Several possibilities for purification Possibility of 150 Nd enrichment (Q  = 3,37 MeV No background from 214 Bi, phase space factor) -Laser isotopique separation possible in India or Russia ? - (was possible in France but facilityhas been dismantled in 2009) -Possibility to use centrifugation ? Common investigations with SNO++ (also for purification) 48 Ca enrichment (Q  = 4,27 MeV No background from 214 Bi, phase space factor) - Laser isotopique separation developed in KOREA (patent) -Support of Korean government for production of 1 kg (enr: 25%) within 3 years

35 FWHM = 7,1 % (7,6% before energy loss correction) SuperNEMO Calorimeter Use of PVT instead of Polystyren, improvements of QE of PMT (8’’) Use of Polystyren still possible Vol: 4 l 5’’ PMT  E/E ~16% NEMO3SuperNEMO Vol: 8 l 8’’ PMT  E/E 6.5 – 8 %

36 Objectives :to mesure 208 Tl < 2  Bq/kg & 214 Bi < 10  Bq/kg in  source foil in 1 month Principle: Detection of BiPo coïncidence : β + α retardé   (164  s) 238 U 214 Bi (19.9 mn) 210 Tl (1.3 mn) 214 Po 210 Pb 22.3 y 0.021%   (300 ns) 232 Th 212 Bi (60.5 mn) 208 Tl (3.1 mn) 212 Po 208 Pb (stable) 36% SuperNEMO : BiPo Prototype BiPo 1 18 modules in LSM 0,72 m 2 Prototype BiPo2 from MOON idea Data taking since July 2008 SuperNEMO… BiPo

37  212 Po decay constant measurement : The lifetime of the 212 Po (299 ns) has been measured in BiPo1 (2 scintillator versions) and BiPo2 using a calibrated Aluminium foil. The Bi-Po events measurement principle has been validated with the prototypes T 1/2 = 274 ± 8 ns BiPo1 BiPo2 T 1/2 = 303.4 ± 2.9 ns SuperNEMO BiPo results

38 2 modules composed of 2 rows of 9 scintillator pairs (face-to-face, 30×30 cm 2 ) coupled to 5’’PMTs. Total number of PMT channels : 72 Surface of measurement : 0.3 x 0.3 x (18 x 2) = 3.24 m 2 3 x 6 superior light lines are fixed on 3 moving supports Maximum opening up is 200 mm for loading the source to be measured 18 inferior light lines are fixed on the table Ways of cables 72 HV, 72 signals Radon free Airflow Lead (150 mm ) Pure iron ( 30 mm ) Wood ( 200 mm ) SuperNEMO BiPo 1 results

39 Wiring Robot prototype 90 cells prototype Wiring robot 90 cells prototype SuperNEMO Tracking

40 Tracking 90 cells first tracks

41 SuperNEMO Radon Strategy to reduce radon: Tracker separated from calorimeter Sealing of the setup  planar geometry More radiopure materials Monitoring of the gaz

42 SuperNEMO Radon Prague : setup to measure permeability of materials Bratislava, UCL : setups to measure radon emanation of materials or gas CENBG: setup to measure radon emanation with liquid scintillator CENBG, Marseille, Saga U: Electrostatic detectors for gaz measurement

43 SuperNEMO MC simulations

44 Se82 Nd150 3 candidates : 82 Se T 1/2 < 0.07 – 0.12 eV 150 Nd T 1/2 < 0.05 eV 48 Ca (IE 50%) T 1/2 < 0.03 eV SuperNEMO sensitivity 100 kg 5 years

45 Inverted hierarchy Normal hierarchy Degenerated  m  current and future limits Expected limits 2013 – 2018 CUORE,GERDA, Majorana, SuperNEMO, EXO,…. Use of « latest NME » for all experiments Klapdor claim Limits in 2010 HM,NEMO3, Cuoricino

46 SuperNEMO phase I : 2011 – 2014 A demontrator module with 7 kg of 82 Se (1 kg of 48 Ca ?) Sensitivity in 1 year: ~5 10 24 y < 0,2 – 0,6 meV Sensibility equivalent to GERDA I Tracker already funded by UK Calendar: - Construction in labs: 2011 – 2012 - Installation, commissioning and running in LSM: 2013 - Few months to qualify the backgroud level - Results 2014 SuperNEMO Module 0

47 SuperNEMO phase II: 2014 - 2018 20 modules, total 100 kg (82Se or 150Nd or 48Ca) Contruction: 2015 – 2016 Commissioning and running: 2015 – 2020 82 Se Sensitivity: 53 – 145 meV Total cost : 40 M€ (2/3 for Europe) Running cost : ~300 k€ Inverted hierarchy Normal hierarchy Degenerated SuperNEMO Demonstrator

48 R&D SuperNEMO 2009 20102011 20122013 NEMO3 Running construction of 20 modules SuperNEMO 1 st module construction Preparation of LSM site BiPoconstruction BiPo 1 and 2 running BiPo running @ Canfranc TDTDRRTDTDRRR SuperNEMO 1 st module running SuperNEMO schedule summary 2014 2015

49 SuperNEMO summary In case of signal, it must be confirmed on other isotope and by: - identification of electrons - measure of both angular and single energy distributions Tracko-calo à la NEMO is the only multi-isotope detector available for such measurement NEMO3 has been a successful experiment at the level of the best limits and has provided data for nuclear matrix element calculations Final sensitivity for NEMO3 : T 1/2 > 2 10 24 years < 0.3 – 0.7 eV SuperNEMO R&D has reached most of the requirements, especially on energy resolution (limits on radiopurity to be checked) Could be possible in the future to obtain several tens of kg of 150 Nd and 48 Ca Expected sensitivity for SuperNEMO : T 1/2 > 10 26 years < 50 – 120 eV LSM extension has good chance to be done and to be able to host the next generation of both double beta decay and dak matter experiments

50 ExperimentIsotope Enriched isotope mass (kg) T 1/2 (yr) (eV)StartStatus CUORE 130 Te2032.1 10 26 0.03 - 0.07*2012Funded GERDA phase I phase II 76 Ge 17.9 40 3. 10 25 2. 10 26 0.2 – 0.5* 0.07 – 0.2* 2010 2012 Funded Majorana 76 Ge30 - 601.10 26 0.1 – 0.3*2011Funded EXO-200 136 Xe2006.4 10 25 0.2 - 0.7*2008Funded SuperNEMO 82 Se 150 Nd 100 2. 10 26 10 26 0.05- 0.09* 0.07 2013 Module 0 Partially funded CANDLES 48 Ca0.5~0.52010Funded MOON II 100 Mo1200.09 – 0.13?R&D DCBA 150 Nd20?R&D SNO++ 150 Nd5000.03?R&D COBRA 116Cd, 130 Te 420 ???R&D Summary * Calculation with NME from Rodim et al., Suhonen et al., Caurier et al. PMN07

51 Modane Underground Laboratory COMMISSARIAT À L’ÉNERGIE ATOMIQUE 4700 m.w.e Muons flux reduced by a factor 2. 10 6  4 muons/m 2 /day

52 LSM EXTENSION

53 LSM extension

54 Space requirements: 32 m X 15 m Minimum height: 13 m Clean room : 7 m X 6 m Electrical power : 80 kW Free radon air : 15 mBq/m3 Water shielding 55m 100m 14,9 m 22,5 m SuperNEMO @ LSM

55  Safety galery work started in September 2009  Excavation of the extension end 2011.  In operation in 2013.  Pre-study funded by LSM and UK in 2006. Preliminary design to host SuperNEMO and EURECA  Detailed studies funded by Savoie departement and Rhone-Alpes Region  Review of project and LoI’s by an indepeandent Scientific Advisory Committee  Estimated cost : 10 M€ for civil work 3 M€ for equipment (ventilation, cooling, electrical power)  Open to international partner (contribution to scienific equipements, experiments) Funding in progress LSM extension


Télécharger ppt "SuperNEMO Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) et CENBG, Université Bordeaux 1 CNRS/IN2P3 Marseille 21 avril 2010."

Présentations similaires


Annonces Google