Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parNathalie Charlotte Marin Modifié depuis plus de 8 années
2
MASSELOTTAGE DES PIECES MOULEES EN SABLE
3
LA SOLIDIFICATION DES ALLIAGES
4
Les variations de volume au cours du refroidissement Les variations de volume au cours du refroidissement
5
A B % B 0100 FAFA FBFB °C SS SS Liq+ SS Liq+ SS SS SS Liquide A B % B 0100 E CC LL SS aa Retrait à l'état liquide Retrait au cours de la solidification Retrait à l'état solide Les variations de volume au cours du refroidissement
6
Les fontes à graphite lamellaire hypoeutectiques °C E Liq + SS SS SS G Liquide CC LL SS °C Volume Céq = 3,7 % C 1153°C Expansion
7
Interactions moule - métal Expansion à la solidification FGS FGL non inoculée 0 10203040 Module de la pièce en mm 1 3 5 7 9 Pression en MPa Pression en MPa Pression crée dans la fonte par l’expansion
8
Interactions moule - métal Expansion à la solidification
9
Les fontes à graphite sphéroïdal
10
MOULES NON RIGIDES Cas des fontes GL et GS Mouvements des parois des empreintes en sable Empreinte finale Système de remplissage ou de masselottage en charge Empreinte initiale
11
MOULES RIGIDES Cas des fontes GL et GS Mouvements des parois des empreintes en sable Empreinte finale Système de remplissage ou de masselottage en charge Empreinte initiale
12
Retraits volumiques des fontes GL et GS AlliageCeq % 50°C 150°C 50°C 150°C Fonte grise lamellaire non inoculée > 4,1 0,5145 Fonte grise lamellaire inoculée > 4.1 3,8à 4,1 < 3.8 0.5 1 2 1 2 3 5 5 5 6 6 6 Fonte à graphite sphéroïdal > 4,3 2,536 à 88 à 10 Rigidenon Rigide* (*) Les coefficients indiqués dans cette colonne englobent les variations de volume possibles du moule surchauffe par rapport au liquidus
13
LES PHENOMENES THERMIQUES
14
conductionrayonnementconvection
15
cL o Chaleur massique : o Chaleur latente : o Conductivité thermique : o Masse volumique : Chaleur massique Chaleur latente Conductivité thermique
16
Transmission de la chaleur par conduction (contact) Qquantité de chaleur conductivité thermique Ssurface de contact température ttemps eépaisseur de paroi
17
Transmission de la chaleur par convection (entre le moule et l’air ambiant) Qquantité de chaleur hen W/m 2 /K Ssurface de contact température ttemps
18
Transmission de la chaleur par rayonnement (par émission de rayons infrarouges) Qquantité de chaleur Stefan 5,67.10 -8 W.m -2.K -4 émissivité Ssurface de contact Ttempérature en K ttemps
19
Diffusivité La diffusivitéa caractérise la vitesse de pénétration d'un front de température à l'intérieur d'un matériau. adiffusivité de température (m 2 /s) conductivité thermique masse volumique cchaleur massique
20
Effusivité L’effusivitéb caractérise la quantité de chaleur absorbée avant l'établissement d'un régime permanent ou pseudo-permanent. beffusivité (J/m 2 /K/s 0,5 ) conductivité thermique masse volumique cchaleur massique
21
Quelques données GX35CrMoV5 Zircon G25CrMo4 Fonte GL 250 Alliage Mo AlSi7Mg0,3 Alliage Cu 0,7 - - - 35 42 47 Silice Olivine Chromite 126 155 136 1 5501 214 0,371 150 8 91036441,921 000 1 900--1 380 2 700--1 435 2 800--1 500 7 600502 9,211 555 7 82046011,712 290 7 20046014,212 475 10 15022555,216 965 2 67591963,119 520 W/m/K kg/m 3 c J/kg/K a mm 2 /s b J/m 2 /K/s 0,5 Cu pur4018 960380117.836 950
22
Pénétration de la température Temps de réponse en température à une distance x d'une source de chaleur. temps de réponse à l’échelon xdistance de l’interface adiffusivité
23
Temps de solidification Temps
24
Dégagement de chaleur d’une pièce de fonderie Q métal Q moule
25
Dégagement de chaleur d’une pièce de fonderie Q mét : quantité de chaleur dégagée par une plaque infinie pour passer de coulée solidus masse volumique de l'alliage coulé Vvolume de la plaque cchaleur massique de l'alliage coulé Lchaleur latente de l'alliage coulé
26
Ecoulement de la chaleur à travers le moule Q m : quantité de chaleur absorbée par le moule Ssurface de contact entre la plaque et le sable beffusivité du sable ttemps
27
Temps de solidification La plaque est solidifiée ( alliage = solidus t = Ts) Q moule = Q métal
28
Temps de solidification Pour un alliage de coulée et des conditions de coulée donnés, K est une constante Avec V : volume de l’élément S : surfaces refroidissantes M : module géométrique (d’après N.CHWORINOFF)
29
LA METHODE DE CALCUL
30
Buts de la méthode o Déterminer l’ordre naturel des différentes parties d’une pièce, o Corriger cet ordre de solidification, o Décider en fonction du degré de santé recherché quelles seront les parties à alimenter par les masselottes.
31
Marche à suivre o Décomposer la pièces en éléments géométriques simples o Déterminer les plaques équivalentes
32
Notion de plaque équivalente ELEMENT REEL PLAQUE EQUIVALENTE x = infini a = infini b = e ' x a b
33
Marche à suivre o Tracer le diagramme thermique o Rechercher une solidification orientée o Corriger l’ordre de solidification
34
Décomposer la pièce en éléments géométriques simples r1 n2 e1 e2 e3 e4 e5 n1 e3 b1 r2 r3
35
Décomposer la pièce en éléments géométriques simples à angles vifs, sous la forme : o d’éléments (e) o de brides d'extrémité (br) o de bossages (bo) o de raccords (r) o de noyaux (n)
36
Exemple de décomposition n2 e1 e2 e3 e4 e5 n1 e3 bo1 r1 r2 r3
37
Déterminer les plaques équivalentes Tracer le diagramme thermique
38
Le module géométrique
39
Module géométrique d’un parallélépipède rectangle o Section de référence : section par laquelle l’élément est alimenté en alliage o x est dans le sens d’alimentation en alliage o a et b définissent respectivement la longueur et la largeur de cette section. x a b
40
Module géométrique d’un parallélépipède rectangle V : volume du parallélépipède rectangle S : surfaces du parallélépipède rectangle en contact avec le sable x a b
41
Module géométrique d’un parallélépipède rectangle Avec comme conditions : o Toute dimension comprise entre deux sections chaudes a pour valeur l’infini o Toutes dimensions a ou b comprises entre une section chaude et une paroi de sable doit être multipliée par deux. x a b
42
L’épaisseur de plaque équivalente
43
Notion de plaque équivalente Plaque infinie d’épaisseure ayant le même temps de solidification.
44
Mmodule géométrique (Longueur) eépaisseur équivalente (Longueur) k et k’constantes Notion de plaque équivalente Temps de solidification Ts proportionnel à e²
45
L’épaisseur de plaque équivalente Exemples Exemples
46
Notion de plaque équivalente Raccord Entité 1 Entité 2 Décomposition
47
Notion de plaque équivalente Raccord Section de référence x a b
48
Notion de plaque équivalente Décomposition Raccord
49
Notion de plaque équivalente x Raccord Section de référence a b La cote « a » est multipliée par 2
50
Notion de plaque équivalente x = infini a
51
Notion de plaque équivalente ELEMENT REEL PLAQUE EQUIVALENTE a = infini b = e x = infini x a b
52
Coefficient de forme de pièces simples
53
Temps de solidification de pièces élémentaires coulées en sable Plaques Cylindres Sphères Temps de solidification en minutes 5,6 4,4 3,6 0,79 0,88 12 Module en cm 0,5 Surchauffe de 100 °C Fonte à graphite lamellaire Moule à 20 °C
54
L/e=l/e=1 =0,75 Le coefficient de forme Cas des barres L/e=2 à 5 et l/e=1 =0,80 L/e=infini et l/e=1 =0,85
55
Le coefficient de forme Cas des plaques L/e=l/e=1 =0,75 L/e=l/e=4 à 5 =0,80 L/e=l/e=6 à 8 =0,90 L/e=l/e=10 =0,95 L/e=l/e=infini =1
56
Le coefficient de forme Cas des cylindres L/d=1 à 5 =0,75 L/d=infini =0,80
57
Le module de refroidissement etl’épaisseuréquivalente Le module de refroidissement etl’épaisseuréquivalente
58
Le module de refroidissement et l’épaisseur équivalente
59
Notion de plaque équivalente ELEMENT REEL PLAQUE EQUIVALENTE x = infini a = infini b = e ' x a b
60
Notion de coefficient de forme Lignes de flux thermique parallèles Plaque infinie Autres cas Lignes de flux thermique divergentes Lignes de flux thermique convergentes
61
L’ANALYSE DE LA FORME
62
Etude d’un moyeu
64
Les éléments
65
e4 e2 e3 e5 e1 Décomposition : les éléments
66
Marche à suivre Déterminer o l'épaisseur de la plaque géométrique, o le coefficient de forme oméga, o l'épaisseur de la plaque équivalente.
67
Déterminer l’épaisseur géométrique e 2abx axbxab 22 V : volume du parallélépipède rectangle S : surface du parallélépipède rectangle en contact avec le sable X A B
68
Déterminer l’épaisseur équivalente eM abx axbxab '.... 2 2 22
69
Moyeu – Analyse de la forme Les éléments Moyeu – Analyse de la forme Les éléments
70
e4 e2 e3 e5 e1 Moyeu - Calcul de l’épaisseur équivalente de l’élément 1
71
Calcul de e 1 Calcul de e 1 e 1 = 13,1 mm e1 x = 53 b = 15 a = infini Section de référence e1e1 2. . 15. 53 2. . 53 + 2. 15. 53 + . 15
72
Calcul de e’ 1 Calcul de e’ 1 =f(x/b, a/b) Déterminer le coefficient de forme x b 3,53 a/b x/b Coefficient de forme 0.75 1 0.950.85 0.90.8 1 7 5 3 9 1 infini 3579 a b = 0,93 e’ 1 = .e 1 = 12,2 mm
73
e4 e2 e3 e5 e1 xabe e' 53 1513,10,9312,2 77,01,007,0 7 1,007,0 7 1,007,0 2230 11,20,758,4 e1 e2 e3 e4 e5 Moyeu - Les éléments simples
74
Les plaques composites
75
Section de référence L2 L1 b1 b2 A élément 1 élément 2 Poser : élément 1 Poser : élément 2 Conditions d’application : )1b,A,1L(ee1e1 )2b,A,2L(ee2e2
76
Les plaques composites Deux cas peuvent se présenter Type 1 Type 2
77
Les plaques composites (Type 1) Section de référence L2 L1 b1 b2 A élément 1 élément 2 b=b1 x=L1 a=A X X’ )1b,A,1L(e e1 alors
78
Les plaques composites (Type 2) Section de référence L2 L1 b1 b2 A élément 1 élément 2 a=A x=L1+L2 b=b1 X’ X e1eLL A b(,,) 12 1 alors
79
Les brides d’extrémité
80
e4 b1 e2 e3 e1 e5 e1 Décomposition : les brides d’extrémité
81
Les brides d’extrémité Détermination de la plaque équivalente e1 de la bride b1 b2 2 L 1 l h Conditions d’application :
82
Poser : e ref Les brides d’extrémité Calcul de e réf La section de référence se confond avec le plan médian passant par XX’ e ref b2 X T1 X’ x )1b,L,2l(e réf e b1
83
Deux cas peuvent se présenter Type 1 Type 2 Les brides d’extrémité
84
e1e1 elLb(,,)21 Les brides d’extrémité (Type 1) Si, la paroi n’a pas d’influence sur le temps de solidification de la bride. e1 b2 X T1 X’ x Poser : e1
85
e1e1 elLb(,,)1 Les brides d’extrémité (Type 2) Si, la paroi augmente le temps de solidification de la bride. Le point de dernière solidification se situe entre X1 X’1 et X2 X’2. On raisonne alors par excès, la section de référence de la bride en X2 X’2 et poser X=l. Poser : e1 b2 X2 X’2 X1 X’1 l x
86
Moyeu – Analyse de la forme Les brides d’extrémité Moyeu – Analyse de la forme Les brides d’extrémité
87
e4 br1 e2 e3 e1 e5 e1 Moyeu - Calcul de l’épaisseur équivalente de la bride d’extrémité 1
88
e4 = 7 br1 x = 22,5 a = infini b = 12 e réf = 9,5 mm Calcul de e réf Calcul de e réf La bride d’extrémité 1 e réf 2. . 12. 22,5 2. . 22,5 + 2. 12. 22,5 + . 12
89
e4 br1 e2 e3 e1 e5 e1 e réf / 3 = 3,2e4 > e réf / 3Bride de type 2
90
e4 = 7 br1 x = 45 a = infini b = 12 e finale = 10,6 mm Calcul de e finale Calcul de e finale La bride d’extrémité 1 e finale 2. . 12.45 2. . 45 + 2. 12. 45 + . 12
91
Llhe réf e 45 12 10,6 b1 9,5 Type 2 e4 br1 e2 e3 e1 e5 e1 Moyeu - La bride d’extrémité 1 0,93 b’1 9,8
92
L’influence des noyaux L’influence
93
e4 b1 e2 e3 e1 e5 e1 n1 Décomposition : influence des noyaux
94
Influence des noyaux e d e e d Noyau galette plate Noyau cylindrique ou sphérique
95
Rapport (épaisseur de sable / épaisseur équivalente de l'entité) Coefficient de forme n GALETTESPHERECYLINDRE Influence des noyaux
96
Noyau cylindrique ou sphérique ene’’. e’ d e’’ d ’
97
Moyeu – Analyse de la forme Influence des noyaux Moyeu – Analyse de la forme Influence des noyaux
98
e4 b1 e2 e3 e1 e5 e1 n1 Moyeu - Influence du noyau n1
99
80 7 Ep n1 e' 2 CYLINDRE Rapport (épaisseur de sable / épaisseur équivalente de l'entité) Coefficient de forme n n = 1 Influence du noyau n1 sur e’2 Influence du noyau
100
Les bossages
101
e4 br1 e2 e3 e1 e5 e1 n1 bo 1 bo2 Décomposition : les bossages
102
Détermination de la plaque équivalente e’ b du bossage e’1 h e’ b l L Les bossages
103
Trois cas peuvent se présenter selon l/h Type 1 Type 2 Type 3
104
Les bossages (Type 1) Conditions d’application : e1 h e’ b l L e'e1h' b
105
Poser : e'elL 1 h(,,) b 2 Les bossages (Type 1) Conditions d’application : Le bossage est considéré comme thermiquement indépendant Section de référence e’1 h L l e’b X X’
106
Poser : eréf Les bossages (Type 2) Conditions d’application : e' 1 eréf b 2 X X’ e’1 h e’b l L eréf
107
Poser : e réf Poser : Les bossages (Type 2) Conditions d’application : Le bossage est considéré comme thermiquement indépendant eelLe1h'(,,')b2 e’réf Section de référence h L e’1 l h L l e’b e réf Section de référence X X’
108
Les bossages (Type 3) Section de référence e’ l h Conditions d’application : lh 2 Substituer au prisme ou au cylindre la plaque équivalente. Poser : Le cas est ensuite à traiter comme un raccord en Té.
109
Moyeu – Analyse de la forme Les bossages Moyeu – Analyse de la forme Les bossages
110
e4 b1 e2 e3 e1 e5 e1 n1 bo 1 bo2 Moyeu - Calcul de l’épaisseur équivalente des bossages
111
bo2 b = 45 x = 8 a = 50 Bossage de type 2 45 8 l h
112
bo2 b = 45 x = 8 e réf 2. 50. 8.45 2. 50. 45 + 2. 8. 45 + 50. 8 e réf = 9,5 mm a = 50
113
e4 b1 e2 e3 e1 e5 e1 e réf / 4 = 2,38b'1 > e réf / 4Bossage de type 2 e b’1 + e réf 'b2b2 2 e’b 2 finale = 14,6 mm
114
3015,4 459,514,6 bo1 bo2 5 8 2 2 40 50 6,3 Llhe réf e finale Type e4 br1 e2 e3 e1 e5 e1 n1 bo 1 bo2 Moyeu - Les bossages
115
L’influence des raccords L’influence
116
e4 b1 e2 e3 e1 e5 r2 r3 r1 e1 bo 1 bo2 n1 Décomposition : les raccords
117
Influence des raccords e’1 > e’2 e’1 e’2 R’rMax(e.' 1; e ' 2)
118
Influence des raccords Coefficient de forme pour raccord e’2/e’1 d’après G. SCIAMA RR
119
Influence des raccords Coefficient de forme pour raccord e’2/e’1 d’après G. SCIAMA RR R’rMax(e.' 1; e ' 2)
120
Influence d’un rayon de raccordement
121
Rayon de raccordement / épaisseur équivalente ( r / Moy (e' R 0 ) ) Majoration de l'épaisseur équivalente due au rayon (%) 78 5T5T 6+6+ L Influence d’un rayon de raccordement
122
Moyeu – Analyse de la forme Les raccords Moyeu – Analyse de la forme Les raccords
123
e4 b1 e2 e3 e1 e5 r2 r3 r1 e1 bo 1 bo2 n1 Moyeu – Calcul des épaisseurs équivalentes des raccords
124
R1 : Raccordement en L Etude du raccord r1 7 12,2 e’2 e’1 e’1 = 12,2 mm e’2 = 7 mm
125
0,57 0,78 R 1r0 = 0,78. 12,2 RrMax(e.' 1; e ' 2) R 1r0 = 9,5
126
Majoration de l'épaisseur équivalente due au rayon (%) Rayon de raccordement / Moy (épaisseurs équivalentes) (r / Moy e' R 0 ) Moy e’ r0 (12,2;7) = 9,6 5 9,6 0,52 rayon Moy e’r0 Major. = 1,1 0,5 1,1
127
R 1r5 = 1,011. 9,5R 1r5 = 9,6
128
Moyeu - Les raccords 0,789,6 0,65510,1 r1 r3 9,5 10.0 L L e1 – e2 e3 - bo1 5 Entités concernées Rayone' réf R finale Type 1.1659,8r29,7T e5– e3 e4 1,1 1 Majoration en % 1 e4 b1 e2 e3 e1 e5 r2 r3 r1 e1 bo 1 bo2 n1
129
Cas particuliers
130
Les corps évidés et longs he 10 Conditions d’application : Poser : eee'(,,) Vérifier ensuite l’influence du noyau. Ces corps sont assimilables à des cylindres de hauteur infinie.
131
Les corps évidés et courts Conditions d’application : Placer la section de référence en XX’. Substituer à la couronne le cylindre équivalent d’épaisseur e’. Poser : eehe''(,,) 2 Vérifier ensuite l’influence du noyau.
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.