La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Modes ouiNumérique, caractère, complexe logiqueListe list ouiNumérique,caractère,complexe logiqueSérie temporelle ts OuiNumérique,caractère,complexe logiqueData.frame.

Présentations similaires


Présentation au sujet: "Modes ouiNumérique, caractère, complexe logiqueListe list ouiNumérique,caractère,complexe logiqueSérie temporelle ts OuiNumérique,caractère,complexe logiqueData.frame."— Transcription de la présentation:

1 Modes ouiNumérique, caractère, complexe logiqueListe list ouiNumérique,caractère,complexe logiqueSérie temporelle ts OuiNumérique,caractère,complexe logiqueData.frame NonNumérique,caractère,complexe logiqueMatrice matrix NonNumérique,caractère,complexe logiqueTableau array NonNumérique,caractèreFacteur factor NonNumérique,caractère,complexe logiqueVecteur vector Plusieurs modesModes possibles

2 Etude empirique des fluctuations d'échantillonnage ● Quelquefois, on est dans l'impossibilité de calculer la distribution d'échantillonnage de certaines caractéristiques utiles: soit parce que n est trop petit,soit parce que la distribution parente est inconnue ● On utilise alors des techniques de simulation, qui substitue la puissance de calcul d'un ordinateur à celle d'un développement analytique:

3 Population de distribution connue: ● Si on connait la loi F de la variable parente X, il suffit de simuler un très grand nombre N d'échantillons de n valeurs de X. Pour chaque échantillon, on calcule la statistique cherchée, d'ou une distribution T1,...Ti ● Si N est grand, la répartition empirique des Ti est proche de la loi de la variable T

4 Population de distribution inconnue:la méthode de rééchantillonnage bootstrap L'idée (B.EFRON) est la suivante: ● Si n est grand Fn* est proche de F, on aura donc une bonne approximation de la loi de T en utilisant Fn*à la place de F. ● On tire donc des échantillons de n valeursdans la loi Fn*, ce qui revient à rééchantillonner dans l'échantillon x1,...xn. ● Autrement dit à effectuer des tirages avec remise des n valeurs parmi les n observées

5 ● Les valeurs observées sont donc répétées. ● Lorsque n n'est pas très grand, on peut énumérer tous les échantillons possible équiprobables,(n^n),sinon on se contente d'en tirer un nombre suffisamment grand à l'aide d'une technique de tirage dans une population finie

6 Cours 4 Les graphiques

7 Le résultat d’une fonction graphique ne peut pas être assigné à un objet mais est envoyé à un dispositif graphique (graphical device) Il y a deux sortes de fonctions graphiques: -principales qui créent un nouveau graphe -secondaires qui ajoutent des éléments au graphe pré-existant

8 Les fenêtres graphiques On peut avoir plusieurs fenêtres, une seule est active Ouvrir une fenêtre: xll(),pdf()… Liste des fenêtres ouvertes et leur numéro dev.list() Active la fenêtre i: dev.set(i) Ferme la fenêtre i: dev.off(i) Partitionner une fenêtre split.screen(): exemple: split.screen(c(1,2)) 2 graphes en ligne screen():sélectionne une fenêtre erase.screen():efface, sauf si le fond d’écran est transparent(valeur par défaut)

9 La commande par() Les graphes sont produits en fonction de paramètres graphiques définis par défaut et modifiables à travers la commande par() Exemples: par(bg="cornsilk") par(xlog=TRUE) ; par(mfrow=c(3,2)) divise la fenêtre graphique en 6 (par défaut 1 seul graphe par fenêtre)

10 La commande par() suite Il est prudent de conserver l ’ancien paramétrage exemple: op=par(no.readonly = TRUE) #mémorise sous le nom op l ’ancien paramétrage par(mfrow=c(1,2)) #modifie le paramétrage plot(1:10,sin(1:10)) plot(1:10,cos(1:10)) par(op) # rétablit l ’ancien paramétrage

11

12 Quelques fonctions graphiques principales plot(x): valeurs de x en ordonnées plot(x,y): nuage de points y en ordonnées x en abcisses coplot():trace tous les nuages conditionnels boxplot():boites à moustaches pairs(): plusieurs nuages, tous les nuages possible sur toutes les colonnes possible du data frame hist():histogramme des fréquences barplot(), matplot(): : diagrammes en batons curve(): tracé d ’une courbe qqnorm(x):quantiles de x en fonction des quantiles de la loi normale qqlot(x,y):quantiles de y en fonction des quantiles de x persp():vues en perspective

13 Exemple: la fonction curve() curve(sin,0, pi)

14 curve(x^3-3*x, -2, 2) curve(x^2-2, add = TRUE, col = "violet")

15 curve(pnorm(x),-3,3, col="red") curve(dnorm(x),-3,3,col="blue",add=TRUE)

16 Les arguments des fonctions principales Titre de la figure (en haut du graphique)main= Nom de l’axe des x des y Fixe les limites des axes xlab= ylab= xlim= ylim= « p »dessine des points « l » dessine une ligne, « s » ou « S » une fonction en escalier…type= Considère les axes comme logarithmiqueslog=« x » log=« y » log=« xy » axes=FALSE Force la fonction à agir comme une fonction de bas niveau (superpose au graphique précédent)add=TRUE

17 Fonctions graphiques secondaires points():comme plot(), mais superpose au graphique précédent lines(),segments() :trace des segments text(),mtext(): ajout de texte arrows(): ajoute des flèches abline(h=): lignes horizontales abline(v=): lignes verticales abline(a,b): ligne de pente b, ordonnée à l’origine a legend(x,y): ajoute la légende au point (x,y) title(): ajout du titre locator():positionne un point sur la fenêtre graphique NB: avec text() on peut afficher une équation utilisant des expressions compatibles avec TEX

18 curve(dnorm(x),from=-3,to=3, main="densité de la loi normale centrée réduite") ● ● abline(v=2,col=2) abline(v=-2,col=2) abline(v=-1,col=3) abline(v=1,col=3) abline(v=3,col=4) abline(v=-3,col=4) abline(h=0)

19 Exemples de graphiques plot(rnorm(100))

20 plot(rnorm(100),type="l")

21 simdonnees=rexp(1000, rate=0.1) hist(simdonnees,prob=T) curve(dexp(x,rate=.1),add=TRUE)

22

23 x=rnorm(10);y=rnorm(10); plot(x,y,xlab="dix valeurs au hasard", ylab="dix autres valeurs")

24 plot(x,y,xlab="dix valeurs au hasard", ylab="dix autres valeurs", xlim=c(2,2),ylim=c(2,2), pch=22,col="red",bg="yellow")

25 x=rnorm(10);y=rnorm(10); plot(x,y,xlab="dix valeurs au hasard", ylab="dix autres valeurs",xlim=c(-2,2),ylim=c(-2,2),pch=22,col="red",bg="yellow",bty="l",tcl=0.4,main="comment customiser un graphique avec R")

26

27 boxplot():boites à moustaches boxplot(len ~ dose, data = ToothGrowth) len supp dose 1 4.2 VC 0.5 2 11.5 VC 0.5 3 7.3 VC 0.5 4 5.8 VC 0.5 5 6.4 VC 0.5 6 10.0 VC 0.5 7 11.2 VC 0.5 8 11.2 VC 0.5 9 5.2 VC 0.5 10 7.0 VC 0.5

28 pairs(): plusieurs nuages, tous les nuages possible sur toutes les colonnes possible du data frame pairs(iris[1:4], pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)]) iris Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa

29

30 barplot(): diagrammes en batons T =table(rpois(100,lambda=5)) r = barplot(T, col='gray')

31 barplot() ● t N=table(Ni = rpois(100, lambda=5)) ● r=barplot(tN, col=rainbow(20)) ● r ● [,1] ● [1,] 0.7 ● [2,] 1.9 ● [3,] 3.1 ● [4,] 4.3 ● [5,]....


Télécharger ppt "Modes ouiNumérique, caractère, complexe logiqueListe list ouiNumérique,caractère,complexe logiqueSérie temporelle ts OuiNumérique,caractère,complexe logiqueData.frame."

Présentations similaires


Annonces Google