La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

AEROLON REVÊTEMENT ISOLANT AVEC BARRIÈRE THERMIQUE

Présentations similaires


Présentation au sujet: "AEROLON REVÊTEMENT ISOLANT AVEC BARRIÈRE THERMIQUE"— Transcription de la présentation:

1 AEROLON REVÊTEMENT ISOLANT AVEC BARRIÈRE THERMIQUE

2 SUJETS DE DISCUSSION Introduction Aerolon
La Science derrière l’Aerogel Terminologie de l’Isolation Points important à retenir

3 Aerogel - Le meilleur produit Isolant au Monde
Insulate - To prevent the passage of heat, electricity, or sound by surrounding with a non-conducting material. Insulating materials within an industrial facility are primarily used for process stability, energy retention, and personal protection. “A picture is worth a thousand words”……. A relatively thin layer of aerogel prevents the crayons from melting despite the underlying flame. 3

4 Conductivité thermique très faible

5 EnovaTM Aerogel – Un matériau unique fabriqué par Cabot Corporation
Aerogel de silice Format :microns Faible conductivité thermique 12mW/mK Haute porosité >90% air Non poreux 20-40nm pores Densité légère ~140 kg/m3 Hydrofuge angle de contact ~150° LONGUE DURÉE DE VIE (scale in mm) Aerogel is not a magic material produced by one company. These particles are produced by several different manufactures. The proprietary information lies in the incorporation of the particles into an effective form of insulation ie. Aerogel blanket and now an aerogel coating. Particle bullet points from the slide…… A cross section view of a single aerogel particle would show hundreds of thousands of tiny pores. As energy is transferred from the heat source side of the particle to the protected side, energy is absorbed in the walls of the aerogel pores thus transferring less energy. By incorporating aerogel particles into a coating film, we can provide a spray applied layer of insulation. 5

6 Propriétés de Enova™ Aerogel
Propriétés définies à l'échelle nanométrique. Il n'est pas affecté même avec une taille réduite Enova™ aerogel’s propriétés intrinsèques (densité, conductivité thermique, hydrophobie) sont définis au niveau submicronique mm 6

7 Discussion sur le transfert de Chaleur
Vue d'ensemble du transfert de chaleur Trois modes de transfert de chaleur Conductivité thermique et un exemple de la R-Value On peut toucher les surfaces de façon sécuritaire To better understand insulation, be must first understand the modes in which heat is transferred. 7

8 Trois modes de transfert de chaleur
The flame is hot and as a result, Energy in the form of heat is radiated from the fire, as the bottom and sides of the pot heat up, they begin to conduct energy to the internal liquid. The water gets its heat through conduction. As the water heats up, the air molecules become less dense and rise through convection. In the pan of boiling water, hot water moves up and cooler water moves down. Résumé = Convection + Conductivité Phase gazeux Phase solide + Radiation 8

9 Conductivité La conductivité est l’intéraction du tranfert d’energie entre les particules , de la plus énergétique à la moins énergétique On the left side of the slide, we see excited air molecule moving about freely. These molecules are bumping into each other and transferring heat as a result. The Lattice network of the aerogel particle traps air molecules limiting a energy transfer. 9

10 Conductivité La conductivité thermique est une propriété intrinsèque des matériaux qui définit la capacité d'un matériau à conduire la chaleur. Matériaux Conductivité thermique, W/m-K Cuivre 401 Aluminium 237 Acier Inoxidable 15 Brique 0.7 Revêtement Isolant typique 0.099 Revêtement Aerogel 0.035 The thermal conductivity of a material is a materials ability to conduct energy in the form of heat. Many materials that are great electrical conductors are also great thermal conductivity. Ex. As you see from the graph, copper which is used in electrical wiring has a high thermal conductivity. 10

11 Conductivité – R-Value
R-Value est une mesure de la résistance thermique. C’est inversement proportionnel à la conductivité thermique et proportionnel à l’épaisseur. C’est une valeur qui est utilisée dans l’industrie de la construction. (hr-ft2-oF)/Btu R-value = x/k, où: x=l’épaisseur de l’Isolation en pouces k=conductivité thermale est en Btu-in/hrft2oF Often times we hear the term R-Value for insulation materials. By doubling a materials thickness, we are doubling the R-Value of the material. The example shows an R-Value of .8. Often times other manufactures will give an R-Value Equivalent of 20 by applying mils of coating. Because R-Value is a function of thickness, this is simply impossible. By limiting the amount of energy conducted through the coating, we can limit all three modes of heat loss. 11

12 La Convection La Convection apparaît entre un fluide en mouvement à l’intérieur d’une pièce lorsque les deux sont à différentes températures. Le flux dans la pièce peut-être forcé ( ex: ventilateur ) Most fluids expand when heated. They become less dense and more buoyant, and so rise. The heated molecules eventually cool, become more dense, and sink. This repeated process sets up convection currents that account for the uniform heating of the air in a room or water in a pot. The coating will do nothing to reduce the form of convection. What it will do is reduce the potential for convection by reducing the surface temperature. By reducing the surface temp of a hot tank, there is less potential for heat loss through convection. Convection forcée Convection naturelle ou libre 12

13 Radiation La Radiation est le transfert de chaleur entre les surfaces
transportées par des vagues électromagnétiques. Example. When outside working on a hot day; working in shade feels significantly cooler than working in the direct sunlight. The air temperature is the same, but what changes is your exposure to radiant energy. The tree serves the purpose of a radiant barrier. 4 factors that influence the amount of energy that is radiated….. Area….in this case the area is fixed Emissivity is a materials ability to absorb and re-emit radiant energy. Emissivity ranges from 0 to 1 where 1 is considered a black body and absorbs 100% of radiant energy. Conventional paints typically have an e-value of .9 and low e coatings (those formulated with ceramic beads or metallic pigments) have an emissivity of .3. Temperature difference…..By limiting the surface temperature through conduction, we reduce the potential of loss through radiation. Distance 13

14 En combinant les trois voici un exemple pratique
Réservoir d’acier – Diamètre =10 mètres, Hauteur 10 mètres Avec un liquide maintenu à 100C dans un environnement Intérieur à 25C Radiation alentours Conductivité À travers le mur 100o C Liquide 100oC Example using all 3 modes of heat transfer. By limiting the energy conducted through the shell of the tank, we limit the amount of energy loss due to convection and radiation. Convection du mur p/r au liquide Convection alentours 14

15 Exemples pratiques – suite
On peut calculer la perte de chaleur du reservoir 100o C Revêtement-ε(0.3) Aerolon 100o C Conv. perdu – 146KW Rad. perdu – 190KW Perte Total – 336KW Conv. perdu – 148KW Rad. perdu – 75KW Perte Total – 223KW 33% d’économie Ajouter ¼” Aerolon 61% Économie Applying inches of insulation would promote energy retention but the bulk of the energy savings comes from going from nothing to something. Notice that by adding the a low e coating the amount of energy loss as a result of convection is increases. Because low e coatings are often formulated using ceramic beads or metallic pigment the conducted energy increases. 100o C 100o C Conv. perdu – 60KW Rad. perdu– 73KW Perte Total – 133KW Add low-ε(0.3) coating Conv. perdu – 76KW Rad. perdu – 32KW Perte Totale – 108KW 69% économie 15

16 Courbe Théorique d’économie avec le produit Isolant AEROLON
This slide shows: with insulation we immediately reach a point of diminishing return & a little goes a long way.

17 Aerolon Comparaison entre deux Réservoirs
Épaisseur 0.200” Économie d’énergie 45% Rapide ROI, plus sécuritaire

18 Touché Sécuritaire Modèle théorique pour le Revêtement Isolant - Aerolon 60C (140 F) 77C (170 F) 85C(185 F) 120 mils Assumptions: Paint e = 0.93 Paint  = 200mW/m-K Cold Side Temperature =20 °C h = 10 For personnel protection: this slide shows the Aerolon thickness (120 mils) required to reduce the steel temp from 212F to the industry adopted 140F. Because a burn is not solely dependent on temperature but rather a materials rate of heat transfer Q=K(delta T)/(material thickness) we can get by with far less material mils of the Aerolon would prevent a burn despite the surface temp reading being significantly hotter than 140F. 18

19 Infrarouge The Aerolon coating may register 300F when checked with an IR gun but the low rate of heat transfer allows you to touch the surface without getting burned. Leaving your hand on the surface for an extend period of time would result in a burn. In this picture you can see that placing your hand on the surface actually cools the surface. 19

20 Surface à157°C et la surface est tiède !

21 Valeurs d’Isolation Comparative
Product K-Value (mW/mK) 1” Revêtements Isolants Aerolon Acrylic Series 971 35 4.1 Aerolon Epoxy Series 975 49 3.0 Mascoat Industrial DTI 86 1.7 Temp-Coat 101 87 Nansulate EPX 94 1.5 TC Ceramic HB 103 1.4 Isolation Conventionelle Mousse Polyuréthane 28 5.1 Silice de Calcium 38 3.8 Laine Minérale 40 3.6 Perlite 42 3.4

22 Bénifices du Revêtement Isolant Aerolon
Éliminer la corrosion sous l’Isolation ( CUI ) Application simple Avoir une conductivité thermique stable Isolation possible en Immersion

23 Caractéristiques - Aerolon
Système : Primer – Finition dépendamment des conditions de service Température maximum d’opération ( 210 °C ) Produit bâtisseur sauve temps et main d’oeuvre

24 Évaluation des Applications possibles
Réservoirs Conduites ( tuyautries ) Endroit qui demande une protection sur des surfaces isolées ( CUI ) Protection des employés (santé sécurité) Échangeurs de chaleur Conduites de vapeur Et beaucoup plus encore …

25 Economies de temps & main d’oeuvre
Épaisseurs revêtement 150C Maximum EFS par couche # de couches exigées Temps de Recouvre-ment Application Jours Tnemec 40 mils 200 mils 3 16 hrs MarqueX 120 mils 20 mils 8 6 hrs Example to make a 300F surface safe to touch…must be able to touch for 5 seconds Brand X has been around for 10 years We need 24 hours after application…they need 72 hours to start seeing insulation benefits


Télécharger ppt "AEROLON REVÊTEMENT ISOLANT AVEC BARRIÈRE THERMIQUE"

Présentations similaires


Annonces Google