La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Des statistiques avec R. Lois de probabilité, distributions On peut évaluer les quantités suivantes: Fonctions de répartition Densité Quantiles Echantillons.

Présentations similaires


Présentation au sujet: "Des statistiques avec R. Lois de probabilité, distributions On peut évaluer les quantités suivantes: Fonctions de répartition Densité Quantiles Echantillons."— Transcription de la présentation:

1 Des statistiques avec R

2 Lois de probabilité, distributions On peut évaluer les quantités suivantes: Fonctions de répartition Densité Quantiles Echantillons Simulés Les fonctions ont le même nom avec des préfixes différents r: donne des échantillons d: donne les valeurs P(X=j) p: donne les valeurs P(X<=x) q: donne la valeur y telle que P(X=x)=y Exemples: dnorm(),pnorm(),qnorm(),rnorm():loi normale dbinom(),pbinom(),qbinom(),rbinom():loi binomiale dt(),pt(),qt(),rt():loi de student dpois(), ppois(), qpois(), tpois():loi de Poisson …

3 exemples dbinom(k, n, p) donne la valeur P(X=k) sachant que X suit une loi B(n,p),c’est-à-dire Exemple: dbinom(3,10,0.2) 0.2013266

4 rbinom(10,n,p) donne un échantillon de taille 10 extrait d’une population suivant une loi B(n,p): Exemple: rbinom(10,10,0.2) [1] 5 2 3 2 4 0 4 2 0 2 pbinom(k,n,p) donne P(X<=k) sachant que X suit une loi B(n,p),c’est-à-dire la valeur de la fonction de répartition F(k) Exemples: pbinom(3,10,0.2); 0.8791261 pbinom(1:10,10,0,2) ; [1] 0.1073742 0.3758096 0.6777995 0.8791261 0.9672065 0.9936306 0.9991356 0.9999221 0.9999958 1.0000000

5 Fonction de répartition de la loi binomiale de paramètres 10 et 0,2

6

7 qbinom(q,n,p) est le quantile, c’est-à-dire la plus petite valeur x telle que F(x)=P(X =q. Exemple: qbinom(0.5,10,0.2) ; [1] 2 qchisq(.1,df=8) est le premier décile de X^2(8) (loi du chi-deux a 8 degrés de liberté)

8 Exemple d'une loi continue: la loi normale qnorm(0.2) [1] -0.8416212

9 Représentation de données discrètes: tracés d'histogrammes La fonction hist() Exemple: v=rbinom(1000,10,0.4) table(v); v 0 1 2 3 4 5 6 7 8 4 44 110 215 253 194 125 42 13 hist(v);

10

11 Distribution d’un ensemble d’observations Quelques fonctions: si v est un ensemble d’observations table(v): compte les fréquences des éléments de v hist(v): trace l’histogramme summary(v): renvoie un résumé statistique du contenu de v,avec le min 1er quartile, moyenne, médiane,3iemme quartile et max quantile(v): renvoie les quantiles correspondant au vecteur de probabilité donné. Par défaut renvoie les quartiles Moins utilisées stem():arbre qqplot(x,y):trace les quantiles de x /quantiles de y

12 exemples essai=sample(1:20,200,replace=TRUE) stem(essai) 1 | 0000000000000000 1 | 2 | 0000000000000000000000000 2 | 3 | 00000000000000000000000 3 | 4 | 0000000000000000 4 | 5 | 00000000000000000000 5 | 6 | 000000000000000000000 6 | 7 | 00000000000000000 7 | 8 | 00000000000000000000000000 8 | 9 | 00000000000000000 9 | 10 | 0000000000000000000

13 hist(essai)


Télécharger ppt "Des statistiques avec R. Lois de probabilité, distributions On peut évaluer les quantités suivantes: Fonctions de répartition Densité Quantiles Echantillons."

Présentations similaires


Annonces Google