Des statistiques avec R. Lois de probabilité, distributions On peut évaluer les quantités suivantes: Fonctions de répartition Densité Quantiles Echantillons.

Présentations similaires


Présentation au sujet: "Des statistiques avec R. Lois de probabilité, distributions On peut évaluer les quantités suivantes: Fonctions de répartition Densité Quantiles Echantillons."— Transcription de la présentation:

1 Des statistiques avec R

2 Lois de probabilité, distributions On peut évaluer les quantités suivantes: Fonctions de répartition Densité Quantiles Echantillons Simulés Les fonctions ont le même nom avec des préfixes différents r: donne des échantillons d: donne les valeurs P(X=j) p: donne les valeurs P(X<=x) q: donne la valeur y telle que P(X=x)=y Exemples: dnorm(),pnorm(),qnorm(),rnorm():loi normale dbinom(),pbinom(),qbinom(),rbinom():loi binomiale dt(),pt(),qt(),rt():loi de student dpois(), ppois(), qpois(), tpois():loi de Poisson …

3 exemples dbinom(k, n, p) donne la valeur P(X=k) sachant que X suit une loi B(n,p),c’est-à-dire Exemple: dbinom(3,10,0.2) 0.2013266

4 rbinom(10,n,p) donne un échantillon de taille 10 extrait d’une population suivant une loi B(n,p): Exemple: rbinom(10,10,0.2) [1] 5 2 3 2 4 0 4 2 0 2 pbinom(k,n,p) donne P(X<=k) sachant que X suit une loi B(n,p),c’est-à-dire la valeur de la fonction de répartition F(k) Exemples: pbinom(3,10,0.2); 0.8791261 pbinom(1:10,10,0,2) ; [1] 0.1073742 0.3758096 0.6777995 0.8791261 0.9672065 0.9936306 0.9991356 0.9999221 0.9999958 1.0000000

5 Fonction de répartition de la loi binomiale de paramètres 10 et 0,2

6

7 qbinom(q,n,p) est le quantile, c’est-à-dire la plus petite valeur x telle que F(x)=P(X =q. Exemple: qbinom(0.5,10,0.2) ; [1] 2 qchisq(.1,df=8) est le premier décile de X^2(8) (loi du chi-deux a 8 degrés de liberté)

8 Exemple d'une loi continue: la loi normale qnorm(0.2) [1] -0.8416212

9 Représentation de données discrètes: tracés d'histogrammes La fonction hist() Exemple: v=rbinom(1000,10,0.4) table(v); v 0 1 2 3 4 5 6 7 8 4 44 110 215 253 194 125 42 13 hist(v);

10

11 Distribution d’un ensemble d’observations Quelques fonctions: si v est un ensemble d’observations table(v): compte les fréquences des éléments de v hist(v): trace l’histogramme summary(v): renvoie un résumé statistique du contenu de v,avec le min 1er quartile, moyenne, médiane,3iemme quartile et max quantile(v): renvoie les quantiles correspondant au vecteur de probabilité donné. Par défaut renvoie les quartiles Moins utilisées stem():arbre qqplot(x,y):trace les quantiles de x /quantiles de y

12 exemples essai=sample(1:20,200,replace=TRUE) stem(essai) 1 | 0000000000000000 1 | 2 | 0000000000000000000000000 2 | 3 | 00000000000000000000000 3 | 4 | 0000000000000000 4 | 5 | 00000000000000000000 5 | 6 | 000000000000000000000 6 | 7 | 00000000000000000 7 | 8 | 00000000000000000000000000 8 | 9 | 00000000000000000 9 | 10 | 0000000000000000000

13 hist(essai)


Télécharger ppt "Des statistiques avec R. Lois de probabilité, distributions On peut évaluer les quantités suivantes: Fonctions de répartition Densité Quantiles Echantillons."

Présentations similaires


Annonces Google