La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

IMAGERIE A HAUTE ENERGIE Du film radiologique à l'image numérique

Présentations similaires


Présentation au sujet: "IMAGERIE A HAUTE ENERGIE Du film radiologique à l'image numérique"— Transcription de la présentation:

1 IMAGERIE A HAUTE ENERGIE Du film radiologique à l'image numérique
Olivier CASELLES Physicien Médical Institut Claudius REGAUD TOULOUSE O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

2 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
INTRODUCTION Nouvelles contraintes de la radiothérapie externe : méthodologiques simulation virtuelle histogrammes dose-volume marges diminuées doses augmentées technologiques: champs de plus en plus complexes (multilames, rotations de table, contention...) nombre de champs de plus en plus élevé modulation d ’intensité O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

3 IMAGE DE CONTRÔLE De nouveaux défis...
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE 7

4 IMAGE DE CONTRÔLE NUMERIQUE Art divinatoire?
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

5 IMAGE DE CONTRÔLE Historique
1942 : visualisation directe au travers d ’un verre plombé du faisceau d ’irradiation horizontal (RX de 180 kV) grâce à un écran fluorescent visualisation et correction en temps réel de la balistique (K de l ’œsophage + chaise tournante) premier exemple de radiothérapie conformationnelle dynamique! 1951 : utilisation de films radiographiques pour le contrôle de la balistique avant irradiation (K de l ’œsophage, Van de Graaf de 2 MeV) proposition d ’introduction d ’air dans la vessie ou le rectum comme agents de contraste utilisation de la double exposition pour visualiser les structures anatomiques en dehors du champ O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

6 IMAGE DE CONTRÔLE Historique
: utilisation essentiellement diagnostique des faisceaux de haute énergie, notamment pour les radiographies pulmonaires diminution de la dose aux poumons et au médiastin le grill costal ne gêne plus la visualisation! 1960 : radiographie au cobalt 60 avec des films standards associés à des écrans en plomb de 1/100ème de pouce environ 30 minutes de développement films utilisés pour le traitement, mais aussi pour diagnostiquer l ’extension tumorale O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

7 IMAGE DE CONTRÔLE Historique
1962 : insertion d ’écrans fluorescents entre le film et les plaques de plomb réduction du temps d ’exposition contraste amélioré? O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

8 IMAGE DE CONTRÔLE Historique
A partir de 1958: "TeleVision Roentgen  system" ou TVR, composé d ’un amplificateur de brillance couplé à une caméra vidéo tournant autour du patient lors de radiothérapies pendulaires à 200 kV visualisation sur un moniteur déporté seulement 5" de diamètre (12,5 cm), soit 2,5" au niveau du patient! "John Hopkins Screen Intensifier", composé d'un écran fluorescent vu par une camera vidéo orthicon au travers d'un système optique de Schmidt (mirroirs + lentilles en série) premières images à haute énergie utilisant un Van de Graaf de 2 MeV contraste insuffisant des tissus : utilisation de mercure ou d'air pour visualiser les structures anatomiques O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

9 IMAGE DE CONTRÔLE Historique
1966 : exposition d'un film lent et de grande latitude d'exposition placé dans une pochette en carton durant l'intégralité de l'irradiation plus confortable que les cassettes modifiées enregistrement de toute la séance compatible avec un développement standard (90s) première étude de l'apport de l'imagerie de contrôle dans la précision du positionnement du patient, et dans le contrôle local Depuis 1996 : introduction progressive de l'imagerie de contrôle en radiothérapie ayant conduit à l'apparition des dispositifs numérisés temps réel O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

10 IMAGERIE HAUTE ENERGIE Les contraintes physiques
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

11 IMAGERIE HAUTE ENERGIE Les contraintes physiques
“image” primaire “image” primaire + diffusée O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

12 IMAGERIE HAUTE ENERGIE Les contraintes physiques
Le bruit quantique peut masquer certains objets à bas contraste... … d’autant plus que l ’objet est de petite dimension. O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

13 IMAGERIE HAUTE ENERGIE Les contraintes physiques
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

14 Le film argentique : constitution
La clé du système : la gélatine Action physique et chimique Maintien en suspension des cristaux d’halogénure Absorption des atomes de chrome perméabilité aux solutions aqueuses Couche protectrice Émulsion (20 µm) Substratum Support (200 µm) O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

15 Le film argentique : Constitution
L’élément photosensible de l’émulsion : l’halogénure d’argent 95% de bromure et 5% d’iodure 109 à 1012 grains/cm² Réseau cubique avec défauts Ions Ag+ libres Atomes de soufre Les cristaux De 0,5 à 3 µm Volumiques Cubiques ou en T O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

16 Le film argentique : traitement
Différentes étapes du traitement de l’émulsion : le développement, le lavage ou l'essorage intermédiaire, le fixage, le lavage final, le séchage. Chaque étape a une influence sur le noircissement final Le développement et le fixage sont les étapes les plus sensibles O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

17 Le film argentique : notions de sensitométrie
D.O. Courbe sensitométrique Dmax A : seuil B : pied de courbe C-D : zone de linéarité E : épaulement F : saturation a : contraste F D E a C B A voile Latitude d’exposition log E O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

18 Le film argentique : exposition directe aux photons
Courbe de noircissement Jamais linéaire (même pour D < 1 Gy) Utilisation d’un modèle non-linéaire à saturation Modèle de Weibull Correspond bien au modèle « single hit – single target » DO = DOsat (1- e-aD1/a) O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

19 Le film argentique : exposition directe aux photons
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Dose (Gy) Densité Optique Courbe de réponse du film KODAK XOMAT-V pour un faisceau de photons de télécobalthérapie. O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

20 Le film argentique : exposition directe aux électrons
3.00 2.50 2.00 Densité optique 1.50 1.00 0.50 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Dose en Gy Courbe de réponse du film KODAK XOMAT-V pour un faisceau d’électrons de 12 MeV (polynôme d’ordre 4). O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

21 Le film argentique : exposition directe aux RI
Influence des paramètres de l’exposition Profondeur Variation importante pour le 60Co Variation discutée à 4 et 6 MV Pas de variation mesurable au-delà de 6 MV Débit de dose Aucune influence dans la gamme des débits de dose usuels Modulation d’intensité? Énergie Pas de convergence de résultats Pas d’influence mentionnée au-delà de 9 MV Une relation complexe? Autres Pochette (interface) Opacité du milieu équivalent-tissu (hyper-sensibilisation) O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

22 Le film argentique : exposition directe aux RI
Influence du développement O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

23 Le film argentique : utilisation d’écrans renforçateurs
Permettent d’augmenter la sensibilité Sont toujours associés à un atténuateur en métal placé en amont de l’écran Support (240 µm) Couche réfléchissante (25 µm) Luminophore (400 µm) Couche de protection (20 µm) O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

24 Le film argentique : utilisation d’écrans renforçateurs
Exemple : la cassette EC KODAK Écran en Gd2O2S:Tb (544 nm) Atténuateur en cuivre (e=1mm) Utilisée avec un film EC-L Sensibilité beaucoup plus élevée Latitude d’exposition plus restreinte O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

25 Le film argentique : utilisation d’écrans renforçateurs
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

26 Les plaques photostimulables (ERLM)
Une solution étudiée par quelques équipes Peu d’études publiées Des questions sur le vieillissement sous faisceau A suivre… O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

27 IMAGERIE HAUTE ENERGIE
Le film radiologique : avantages Utilisable sur toutes les machines d'irradiation Investissement initial modéré + coûts de fonctionnement Archivage Depuis quelques années, une amélioration significative des performances Films de contrôles ou de vérification O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

28 IMAGERIE HAUTE ENERGIE
Le film radiologique : inconvénients Image en léger différé Pas de possibilité de post-traitement pour améliorer la qualité Pas d'enregistrement de séquences dynamiques Sans une étape de numérisation secondaire Pas d'archivage numérique Pas de transmission par réseau informatique Pas de recalage avec une image de référence Calibrage spatial délicat Nécessité de disposer d'un système de développement stable Arrêté 2950 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

29 IMAGERIE NUMERIQUE Rappels
Principe de la conversion analogique/numérique détection d'un "signal" analogique (continu) échantillonnage (discrétisation) vecteur ou matrice de données numériques mémorisation, stockage, transmission traitement ou/et analyse représentation O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

30 IMAGERIE NUMERIQUE Rappels
Paramètres quantifiant la qualité de l ’image numérique : rapport Signal/Bruit (SNR) SNR = (n-n ’)/(n+n ’)½ n : bruit de fond (µ, L) n ’ : structure anatomique (µx, Lx) SNR = [A F h e-µL (1 + e-D + 2F/(1-F)]½ * S/2 (Motz et Danos) A : aire de la structure anatomique F : fluence de photons incidents h : efficacité quantique du détecteur F : fraction de diffusé S : contraste objet D = Lx (µx - µ) modèle simplifié et optimiste! O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

31 IMAGERIE NUMERIQUE Rappels
Paramètres quantifiant la qualité de l ’image numérique : rapport Signal/Bruit (SNR) limitations de l ’imagerie à haute énergie exemple : 1 cm d ’os cortical 20 cm d ’eau S varie de 0,4 à 0,5 pour un champ de 25 cm de diamètre Contraste objet: 18,5% à 50 keV 1,8% à 1,25 MeV 1,4% à 2 MeV 1% à 6 MeV heureusement, un grand nombre de photons parviennent sur le détecteur photons de haute énergie doses importantes pas de grille O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

32 IMAGERIE NUMERIQUE Rappels
Paramètres quantifiant la qualité de l ’image numérique : résolution spatiale caractérisée par la Fonction de Transfert de Modulation (MTF) calculée à partir de la Fonction de Dispersion Linéique (LSF) par transformée de Fourier, en l ’absence de rayonnement diffusé Bruit caractérisé par le spectre de puissance de bruit (NPS) la plus grande partie du bruit vient du détecteur lui-même! O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

33 IMAGERIE NUMERIQUE Rappels
Paramètres quantifiant la qualité de l ’image numérique : efficacité quantique de détection (DQE(f)) DQE(f) = [SNRout(f) / SNRin(f)]² DQE(f) = [K² MTF²(f)] / [F NPS(f)] K : constante prenant en compte le gain du détecteur DQE décroît quand : la résolution diminue, le bruit augmente, le rendement diminue. Une image de qualité doit pouvoir être obtenue avec une dose relativement faible ( 1 cGy) Efficacité de détection des rayons X pour des détecteurs à plaque de métal < 2% conditionne l’efficacité quantique de détection de tous les systèmes (sauf 1)! O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

34 IMAGERIE NUMERIQUE Rappels
Paramètres quantifiant la qualité de l ’image numérique : résolution de contraste obtenue à partir des images produites grâce à un fantôme exemple: plaque d ’aluminium de 1,3 cm d ’épaisseur percée de trous dont la profondeur varie entre 0,29 et 4,57 mm et le diamètre entre 1,19 et 12,8 mm dérive des corrections appliquées: uniformité artefacts O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

35 IMAGERIE DE CONTRÔLE NUMERIQUE Les différents systèmes
Deux types de détecteurs: les systèmes à balayage barrettes de diodes barreau scintillant les systèmes à grand champ écrans photostimulables ouvertures codées matrices de chambres d ’ionisation système à base de caméra vidéo détecteurs au silicium amorphe O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

36 DETECTEURS Chambres d ’ionisation
Principe 2 plaques d ’électrodes (300 V) orientées à 90° séparées par un liquide diélectrique organique (2,2,4 trimethylpentane) l ’irradiation du liquide crée des ionisations générant un courant collecté sur les électrodes 256x256 chambres d'ionisation 32,5x32,5 cm² - espacement de 1,27 mm électronique placée derrière les chambres dimensions extérieures : 60 x 60 x 5 cm3 (rétractable) ensemble contrôlé par un ordinateur O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

37 DETECTEURS Chambres d ’ionisation
Principe balayage des électrodes par application d ’une haute tension, 1 par 1 (5,5 s) en mode haute résolution ou 2 par 2 en basse résolution (1,5 s) la création de paires d ’ions est un processus rapide et la recombinaison un processus lent apparition d ’un équilibre après environ 0,5 s d ’irradiation création d ’une image « latente » sur toute la surface une irradiation de plus de 0,5 s n ’augmente pas le signal le signal est augmenté d ’un facteur 6 à 7 grâce à cette intégration mais la durée de cette intégration est faible par rapport à la durée de lecture une grande partie du signal produit n ’est pas mesurée il faut une quantité importante de rayonnement pour produire une image O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

38 DETECTEURS Chambres d ’ionisation
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

39 DETECTEURS Chambres d ’ionisation
Avantages et inconvénients peu encombrant et léger pas de distorsions géométriques pas de partie mobile pureté absolue du liquide de remplissage nombreuses corrections nécessaires sensibilité aux RI de l'électronique temps d'irradiation importants sensibilité aux variations de débit de photons temps de stabilisation (environ 1 s) avant acquisition O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

40 DETECTEURS Chambres d ’ionisation
Image d ’un fantôme de Rando à 8 MV avant (a) et après (b) correction des variations d ’offset et de sensibilité de l ’électromètre, ainsi que de l ’épaisseur du fluide. O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

41 DETECTEURS Écran fluorescent + miroir + caméra
Principe plaque métallique associée à un écran fluorescent (oxysulfide de gadolinium) miroir à 45° + caméra SIT ou CCD (balayage lent) numérisation du signal vidéo O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

42 DETECTEURS Écran fluorescent + miroir + caméra
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

43 DETECTEURS Écran fluorescent + miroir + caméra
Problème de l ’efficacité de collecte : importante diffusion de la lumière dans l’écran émission de lumière isotropique angle de solide de détection très faible 0,1 à 0,01% des photons sont détectés O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

44 DETECTEURS Écran fluorescent + miroir + caméra
Un compromis! écran phosphorescent épais (400 mg/cm²) bon rendement de conversion perte de résolution apparition de taches optiques à large ouverture meilleure collecte des photons lumineux aberrations sphériques dégradation de la résolution sur les bords vignetage nombreuses corrections en temps réel non uniformité de réponse distorsions O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

45 DETECTEURS Écran fluorescent + miroir + caméra
Avantages et inconvénients couverture de l ’ensemble du champ pas d'électronique dans le champ d ’irradiation acquisition rapide de l'image bonne résolution spatiale mais distorsions légères système volumineux caméra de très haute qualité de durée de vie limitée sensibilité de la caméra à l'irradiation directe O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

46 DETECTEURS Écran fluorescent + miroir + caméra
Image d ’une région pelvienne à 6 MV avant (a) et après (b) fenêtrage pour améliorer le contraste. Les corrections de distorsion et de sensibilité ont été appliquées durant l'acquisition. La raquette est visible sur l'image. O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

47 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
DETECTEURS Écran fluorescent + fibres optiques + caméra CCD 256 x 256 FO, 40x40 cm² Matrice linéaire de diodes 256 diodes espacées de 2 mm + balayage mécanique Double rangée de cristaux scintillantes 2x64 cristaux décalés Chambre à fils en théorie, le meilleur système…et le plus cher! O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

48 DETECTEURS A base de silicium amorphe
Principe faible épaisseur (2mm) dépôt d'une couche semi-conductrice sur un substrat de verre de 1 mm surfaces de 30 x 30 cm² (bientôt 60 x 60 cm²) association à un couple plaque métallique-écran fluorescent chaque pixel correspond à un couple photodiode-transistor à effet de champ accumulation de charge dans la photodiode lecture par application d'une tension ligne par ligne pour rendre conducteur le transistor à effet de champ (rôle d'interrupteur) chaque photodiode dans une ligne de lecture est associée à une ligne de données O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

49 DETECTEURS A base de silicium amorphe
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

50 DETECTEURS A base de silicium amorphe
Avantages : rapidité de lecture (50 images / seconde) faible épaisseur + grande surface de détection 30 % de lumière convertie en signal radio-résistance élevée actuellement, pixels de 0,45 x 0,45 mm² Inconvénients : artefacts dus à l'électronique variations de réponses dues à des courants de fuite et des variations de sensibilité entre les éléments le bruit augmente avec la dimension du détecteur probablement le futur, mais toujours WIP... O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

51 DETECTEURS A base de silicium amorphe
Image d ’un fantôme de Rando à 6 MV réalisée avec 7,5 UM. Les données brutes sont visibles en (A), corrigées des défauts d'uniformité en (B), l'image finale après application d'un filtre médian se trouve en (C) . L'image en (D) montre la même région visualisée grâce à un film dédié à l'imagerie haute énergie. O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

52 DETECTEURS A base de silicium amorphe
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

53 SYSTEMES COMMERCIALISES
ELEKTA GEMS (VARIAN) SIEMENS VARIAN O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

54 SYSTEMES COMMERCIALISES
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

55 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
DETECTEURS Conclusion : pour tous les systèmes commercialisés, le champ de vue est limité le paramètre important n'est pas forcément la qualité de l'image, mais plutôt le temps nécessaire pour réaliser une image possibilité de correction en temps réel acquisition dynamique d'images durant l'irradiation réduction de la dose, surtout dans le cas de double exposition la technologie utilisée tend à s'uniformiser, seuls les concepts diffèrent O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

56 TRAITEMENT D’IMAGE ASSOCIE
Schéma simplifié du traitement de l'image Traitement zone claire Image Initiale Image Traitée Traitement zone sombre O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

57 TRAITEMENT D’IMAGE ASSOCIE
APRES TRAITEMENT AVANT TRAITEMENT O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

58 IMAGE DE CONTRÔLE Sa place
Le but d'un cliché de contrôle n'est pas de réaliser une jolie image, mais de vérifier la balistique du traitement Il est donc important de disposer d'informations permettant de se repérer spatialement marqueurs externes ou repères internes recalage et fusion avec des images morphométriques (anatomiques) nécessité de l'établissement d'une image de référence cliché de simulation DRR image de contrôle O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

59 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
RECALAGE ET FUSION O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

60 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
RECALAGE ET FUSION Image de contrôle Image de simulation Image de superposition O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

61 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
RECALAGE ET FUSION DRR Portal Fusion O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

62 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
RECALAGE ET FUSION Technique de recalage de Chamfer. Les lignes de repères anatomiques sont créées à partir des images de simulation (a), l'image de contrôle (b) est traitée pour donner l'image d'extraction. Sa transformation donne l'image de fonction de coût (d), qui est utilisée pour déterminer le meilleur recalage. O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

63 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
RECALAGE ET FUSION O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

64 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
RECALAGE ET FUSION O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

65 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
RECALAGE ET FUSION O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

66 Décision de traitement radiothérapique
Détermination du volume à irradier Définition du plan de traitement Cliché de simulation Choix de la machine DRR BEV Simulation TDM Dosimétrie incorrect Image de contrôle Première mise en traitement correct Poursuite du traitement perthérapeutique O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

67 Décision de traitement radiothérapique
Détermination du volume à irradier Définition du plan de traitement Cliché de simulation Choix de la machine DRR BEV TDM incorrect Simulation virtuelle et dosimétrie Image de contrôle Première mise en traitement correct Poursuite du traitement perthérapeutique O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

68 Décision de traitement radiothérapique
TDM Détermination du volume à irradier Définition du plan de traitement incorrect Simulation virtuelle DRR BEV Choix de la machine Dosimétrie Image de contrôle Première mise en traitement correct Poursuite du traitement perthérapeutique O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

69 Décision de traitement radiothérapique
TDM, IRM, TEP, MN, Écho Fusion et détermination du volume à irradier Définition du plan de traitement incorrect Simulation virtuelle DRR BEV Choix de la machine Dosimétrie Image de contrôle Première mise en traitement correct Poursuite du traitement perthérapeutique O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

70 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
Pour faire débat… Des questions que tout le monde se pose… Combien de clichés? A quels moments? Images statiques ou dynamiques? Qui contrôle? Que faire en cas de décalage? Quelle est la tolérance? O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

71 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
Et pour l'alimenter… Une bibliographie abondante Des points de vue divers, mais des mots clés… "A new approach to off-line setup corrections : combining safety with minimum workload", J.C.J. Boer and B.J.M. Heijmen, Medical Physics, 29, n°9, , septembre 2002. O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

72 IMAGERIE DE CONTRÔLE NUMERIQUE
Avantages : amélioration des clichés de contrôle automatisation du traitement de l'image numérisation des clichés de référence aide à la comparaison des images intégration dans le dossier informatisé liaison à un système de vérification des paramètres? Inconvénients : prix unitaire et global (1 système / machine) dégradation progressive des performances dose (surtout si double exposition) interprétation? O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

73 IMAGERIE NUMERIQUE Rappels
Un paramètre important : la visualisation! O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

74 IMAGERIE DE CONTRÔLE L’avenir?
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

75 IMAGERIE DE CONTRÔLE L’avenir?
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

76 IMAGERIE DE CONTRÔLE L’avenir?
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

77 IMAGERIE DE CONTRÔLE L’avenir?
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

78 IMAGERIE DE CONTRÔLE L’avenir?
O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

79 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
Sous contrôle?… J ’espère qu ’ils savent ce qu'ils font... Je dirais même plus : j ’espère qu’ils font ce qu'ils savent... O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE

80 O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE
Gardez l'œil! O. CASELLES – 22 au 24 mai 2003 – ICR TOULOUSE


Télécharger ppt "IMAGERIE A HAUTE ENERGIE Du film radiologique à l'image numérique"

Présentations similaires


Annonces Google