Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
1
Apports des méthodes d’homogénéisation
numériques à la classification des massifs rocheux fracturés Michel Y. CHALHOUB Centre de Géosciences de l’École des Mines de Paris En collaboration avec le Laboratoire Central des Ponts et Chaussées 22 juin 2006
2
Plan de l’exposé A- Objectif de l’étude
B- Méthodes de classification des massifs rocheux C- Homogénéisation numérique des milieux fracturés D- Méthode de modélisation numérique E- Classification numérique F- Conclusions et perspectives
3
A- Objectif de l’étude B- Méthodes de classification des massifs rocheux C- Homogénéisation numérique des milieux fracturés D- Méthode de modélisation numérique E- Classification numérique F- Conclusions et perspectives
4
s e A. Objectif de l’étude
● Détermination des propriétés élastoplastiques des massifs rocheux fracturés par des méthodes d’homogénéisation numériques (éléments finis). ● Présenter une classification numérique des massifs rocheux. A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives s Roche Fracture Massif Rocheux s s e s’ t Essai au Laboratoire: Possible Essai au Laboratoire: Impossible Solution Possible: Homogénéisation numérique
5
B- Méthodes de classification des massifs rocheux
A- Objectif de l’étude B- Méthodes de classification des massifs rocheux B.1 Méthodes empiriques B.2 Méthodes analytiques C- Homogénéisation numérique des milieux fracturés D- Méthode de modélisation numérique E- Classification numérique F- Conclusions et perspectives
6
B.1 Méthodes empiriques: RMR, Q, RMI, GSI…
A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Avantages Inconvénients Utilisation simple et rapide Estimation indirecte des propriétés mécaniques Approche empirique Taille du VER : absente Anisotropie : non prévue B.2 Méthodes Analytiques Avantages Inconvénients Calcul rigoureux des propriétés mécaniques Nombre limité de familles de fractures Extension infinie des fractures Espacement périodique
7
B- Méthodes de classification des massifs rocheux
A- Objectif de l’étude B- Méthodes de classification des massifs rocheux C- Homogénéisation numérique des milieux fracturés C.1 Principe d’homogénéisation C.2 Choix des massifs homogénéisables C.3 Modèles de comportement mécaniques C.4 Homogénéisation en élasticité linéaire C.5 Élasticité ellipsoïdale C.6 Homogénéisation en élastoplasticité D- Méthode de modélisation numérique E- Classification numérique F- Conclusions et perspectives
8
? C.1 Principe d’homogénéisation
Remplacer un milieu hétérogène par un milieu homogène équivalent A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Milieu Hétérogène Milieu Homogène Équivalent Roche : E, n, C, F Joints : Kn , Kt , Knt , c , f Massif Homogénéisé : Sm(q), Cm(q), Fm(q) ?
9
(Moyennes Volumiques)
Méthode de calcul des propriétés équivalentes: smoyenne emoyenne (Moyennes Volumiques) A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Calcul des smoy. et emoy.à partir des forces et des déplacements nodaux sur le contour (Pouya et Ghoreychi [2001]) Force nodale 1 2 3 4 F u Contraintes Déformations Déplacement nodal
10
C.2 Choix des massifs homogénéisables
● Massifs sédimentaires : Famille horizontale: plan stratigraphiques. Famille verticale: fractures d’extension (l2) verticale. 1- Deux familles de fractures A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Massifs types CFMR-MMR [2000] Analytique possible Analytique impuissante Numérique prometteuse Solution Empirique ● Surfaces de foliation de gneiss, fluidité de granite, … 2- Une famille de fractures : extension (l2) finie
11
t < C + sn tan F C.3 Modèles de comportement mécaniques
Matrice rocheuse ● Milieu homogène isotrope. ● Comportement élastique linéaire (E et n ) ● Comportement plastique parfait (C et F) A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives s s’ t < C + sn tan F straction scompression
12
Discontinuités ● Joints de Goodman et al. [1968] d’épaisseur nulle.
2 degrés de liberté en déplacement : Ux et Uy Discontinuités ● Joints de Goodman et al. [1968] d’épaisseur nulle. ● Comportement élastoplastique parfait (Kn, Kt, Knt = Ktn, c et f ). A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives sn t pas de plastification en compression Critère de résistance Relation contrainte déformation straction
13
C.4 Homogénéisation en élasticité linéaire
2.1 Loi de Hooke e = S : s , s = C : e C.4 Homogénéisation en élasticité linéaire Forme matricielle Milieu 3D : But : Recherche du tenseur d’élasticité du massif sij : 21 termes indépendants A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 2.2 Milieux fracturés plans Fractures infinies ┴ au plan de calcul : Plan d’homogénéisation plan de calcul Roche isotrope: 6 Inconnues Comment les calculer??
14
2.3 Différents modes de chargement
hybride Contrainte imposée Déplacement imposé Compression X Compression Y Cisaillement XY A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Méthode utilisée: ● Simple, facile à appliquer, satisfaisante pour les milieux fracturés ● Risque de ne pas respecter toutes les symétries sij=sji
15
Résultat indépendant du mode de chargement
2.4 VER homogène A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Uy=-U.y/D Ux=-U.x/D Ux=U.y et Uy=U.x 10 Inconnues Comment les calculer?? Calcul plus simple de C que de S Méthode de calcul des termes d’élasticité cij Reste à calculer c33 ? C:S=I Résultat indépendant du mode de chargement
16
Anisotropie ellipsoïdale
C.4 Élasticité ellipsoïdale (Saint Venant [1863], Pouya [2006] ) Isotropie : Sphère Anisotropie ellipsoïdale 3.1 Hypothèse A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives La surface indicatrice d’un paramètre monodirectionnel (module d’Young) définit un ellipsoïde ● Hypothèse représentative de certains types de sols et de roches anisotropes (Pouya & Reiffsteck [2003]). ● Approximation acceptable à nos résultats. 3.2 Avantages du modèle ellipsoïdal 1- Nombre réduit de paramètres 2- Transformation de certains milieux fracturés anisotropes à des milieux isotrope de géométrie modifiée (Pouya & Zaoui [2005]). 4- Calcul du tenseur d’élasticité 3D à partir des résultats d’un calcul 2D.
17
& 3.3 Choix du modèle ellipsoïdal (de Saint Venant):
4 paramètres E1, E2, E3, n & A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives varient suivant un ellipsoïde a=1,2,3 c55 c44 4 paramètres c11, c22, c33, h
18
3.4 Méthode de calcul des paramètres ellipsoïdaux
Minimisation de la distance entre Cellipsoidal et Cnumérique A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives ellipsoïdal calculé Équation d’une ellipse: x.M.x = 1 (Cijklninjnknl)1/2 = niMijnj ce11 = (Hd11)2 , ce22 = (Hd22)2 , ce33 = c33
19
Critère adopté: Mohr-Coulomb (Cm et Fm) dans le plan 1-2
C.5 Homogénéisation en élastoplasticité But: Recherche d’un critère de résistance Ultime A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives (1) Variation linéaire!! Mohr-Coulomb Fm Cm Critère adopté: Mohr-Coulomb (Cm et Fm) dans le plan 1-2 t < Cm+sn tan Fm
20
B- Méthodes de classification des massifs rocheux
A- Objectif de l’étude B- Méthodes de classification des massifs rocheux C- Homogénéisation numérique des milieux fracturés D- Méthode de modélisation numérique D.1 Méthodologie de travail D.2 Choix du mode de chargement D.3 Outil de calcul numérique (HELEN) D.4 Exemple d’illustration d’un massif granitique E- Classification numérique F- Conclusions et perspectives
21
D.3 Méthodologie pratique de travail (1)
Génération des disques dans l’espace: modèle de Baecher et al. [1977] 2 Recherche des traces des fractures dans un plan A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Paramètre Loi de distribution Coordonnées des centres des disques Uniforme Pendage (a) Normale Azimut (f) Extension (l) Exponentielle décroissante Épaisseur (e) Paramètres: x,y,l,q,e 3 Recherche de la taille du VER Vérification Grandeurs calculées par rotation de base équivalentes aux grandeurs calculées par rotation du VER Carré centrée de taille croissante Carré amovible de taille constante Et/ou
22
D.3 Méthodologie pratique de travail (2)
4 5 6 7 Ajustement de la géométrie des fractures application des filtres numériques Maillage du massif rocheux création des éléments triangulaires Dédoublement des nœuds création des éléments joints Chargement numérique (direction: X,Y,XY) calcul de la matrice d’élasticité S et des paramètres de résistance Cm et Fm 1 T3 3 2 fracture Avant filtrage Après A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Quel Mode?
23
D.4 Choix du mode de chargement (VER fini)
Raisonnement Comparaison de Em (dép. imp.) et de Em (cont. Imp.) 1 famille de fractures d’extension infinie A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 4.2 Résultat Knd>>E : Cont. imp. et Dép. imp.: résultat correcte Knd<<E : Dépl. imp.: résultat incorrecte Analyse de la déformée dans un domaine fini. Déplacement imposé Contrainte imposée Déplacement imposé Contrainte imposé Solution théorique d (m) E (MPa) Kn (MPa/m) Knd/E Em (Mpa/m) Econt.imp. Erreur relative cont.imp. Edept.imp. dep.imp. 4 100000 10000 0.04 1.82% 177.49% 400 9750.6 0.056% 0.019% Déplacement relatif K 0 Raideur réelle Continuité de la roche Raideur K réalité Kn<<E Conclusion Dép. imp. borne sup. de Em. Cont. Imp. borne inf. de Em. Résultat compatible avec les travaux théoriques de : Huet [1999] Choix du mode de contrainte imposée
24
D.5 Outil de calcul numérique (HELEN)
Travail de classification nombre de simulations (>5000) besoin d’un outil numérique A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Automatise le travail d’homogénéisation Facile à manipuler Interfaces graphiques Lien avec d’autres logiciels AutoCAD, Robot, MS Excel HELEN Homogénéisation Élémentaire Numérique 5.1 Travail de développement numérique Phase de pré-traitement Basée sur un travail de base MASFRA écrit par A. Pouya (Pouya et Ghoreychi [2001]). Modules: GeDisc, GeFrac, GeGraph, Polish, GeDraw, GeMesh, Gejoint. Phase de post-traitement Modules: Homogen, Verif, AjustEllips Développement spécial Modules: GeoREV Run
25
5.2 Test et validation de l’outil numérique
Validation en élasticité 1- Une famille de fractures 2- Deux familles orthogonales d’extension infinie 3- Deux familles inclinées d’extension infinie 4- Fractures vides d’extension finie 5.2 Test et validation de l’outil numérique Validation du joint de Goodman et al. [1968] (code ANTHYC G.3S, École Polytechnique): Comparaison avec des solutions analytiques A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 1 2 3 4 1- Massif sans fractures 2- Une fracture inclinée d’extension infinie 3- Une famille de fractures horizontale d’extension finie Validation en élastoplasticité 1 2 3
26
D.6 Exemple d’illustration d’un massif granitique
6.1 Présentation du massif de la Vienne ● Massif granitique dans le Sud Ouest de la France (Pouya et Ghoreychi [2001]) D.6 Exemple d’illustration d’un massif granitique 2m <D<20m A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 2m 12m 20m Fluctuation due à l’absence des fractures externes 6.2 Calcul du VER géométrique Espacement: 3 directions d’échantillonnage VERgéo.≈15m
27
6.3 Calcul du VER mécanique et des propriétés élastiques
(Chalhoub et Pouya [2006]) E1≈65.3GPa E2≈63.1GPa n21≈0.187 n12≈0.193 G12≈26.8GPa VERméca.≈15m A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 2m 12m 20m Espacement Conclusion VER géo. ≈ VER méca. (Attention! pas de dispersion de Kn et Kt dans le domaine). Allure de la courbe du Module d’Young : comparable à celle de l’espacement moyen dans la même direction.
28
6.4 Calcul dés propriétés de résistance
Compression 2 confinement 1MPa Compression 1 confinement 0.5MPa Compression 1 confinement 0MPa 1 Cisaillement de gauche à droite Cisaillement de droite à gauche Courbes contraintes déformations numériques A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Compression 2 confinement 0.5MPa 3 Cm et Fm homogénéisés (isotrope) 2 Cm et Fm (anisotrope) Compression 1 Compression 2
29
B- Méthodes de classification des massifs rocheux
A- Objectif de l’étude B- Méthodes de classification des massifs rocheux C- Homogénéisation numérique des milieux fracturés D- Méthode de modélisation numérique E- Classification numérique E.1 Étude paramétrique E.2 Recherche et ajustement de la taille des VER (D) E.3 Illustrations du maillage et des déformées E.4 Classification numérique: Résultats de calcul E.5 Classification numérique: Ajustement des résultats E.6 Exemple d’illustration d’un massif sédimentaire F- Conclusions et perspectives
30
E.1 Étude paramétrique ● Classification élastique linéaire
Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Variation de 5 paramètres: E extension (l) espacement (d) n Kn,Kt Roche: Module d’Young E Coefficient de Poisson n Joint: raideur normale Kn raideur normale Kt espacement d extension l
31
1.1 Étude paramétrique (plage de variation des paramètres)
ROCHE Paramètres mécaniques en élasticité E(MPa) 2 000 50 000 n 0.25 Description géologique Un grès argileux ou une craie Calcaire de dureté moyenne, grès bien cimenté Un granite sain Classification Très faible Moyenne Forte A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives FRACTURES Paramètres mécaniques en élasticité Kn(MPa/m) 2 000 Description géologique Joints humides ou remplis d’argile Joints sec remplis de matériau autre que l’argile Joints colmatés très minces dans un granite ou un basalte Classification Faible Moyenne Forte Kt/Kn 0.01 0.25 0.50 Paramètres Géométriques d2(m) 0.27 0.55 1.00 Faible-moyenne Moyenne-forte l2(m) 1.50 5.20 Très faible d1(m) 0.75 2.60 l1(m) infinie Plage de variation 2000<E(MPa)<100000 n=0.25 2000<Kn(MPa/m)<200000 0.01<Kt /Kn<0.5 0.27<d(m)<1 0.5<l(m)<5.2
32
Paramètres mécaniques en élasticité Paramètres Géométriques
1.1 Étude paramétrique (écriture indicielle compacte) ROCHE Paramètres mécaniques en élasticité Numéro du paramètre 1 2 3 E(MPa) 2 000 50 000 n 0.25 FRACTURES Kn(MPa/m) Kt/Kn 0.01 0.50 Paramètres Géométriques d2(m) 0.27 0.55 1.00 l2(m) 1.50 5.20 d1(m) 0.75 2.60 l1(m) infinie A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Écriture indicielle exemple d’emploi: d2=0.55m: 2 l2=5.20m: 3 E=50000MPa: 2 Kn=200000MPa/m: 3 Kt/Kn=0.25: 2 géométrie Propriétés mécaniques ● Classification numérique: Nombre de cas: 2*35 = 486 Nombre de simulations numériques: 5292 [M1] [M2]A3-31 these Arlid palmestrom (Filled joints with partly or no wall contact) table A3-21 [M3]page 4-16 Itasca Flac version 3.4
33
1.2 Domaine de génération des fractures: 1 famille
croît A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 15m 30m 50m l croît
34
1.2 Domaine de génération des fractures: 2 familles
croît A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 1-1 1-2 1-3 Massif sédimentaire 1-2 2-2 3-2 1-3 2-3 3-3 2-1 2-2 2-3 1-1 2-1 3-1 1-1 2-1 3-1 3-1 3-2 3-3 d croît 15m 15m 30m 30m 50m 50m
35
E.2 Recherche et ajustement de la taille des VER (D)
Hypothèse : Taille du VER : 2.1 Recherche de la taille des VER A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives VER géométrique 10m 7m 1 famille: cas 1-2 1 famille: cas 1-2 Milieu Anisotrope
36
2.2 Ajustement de la taille des VER (1 famille)
Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Résultat compatible avec VER hydraulique Wei et al. [1995]: 10d<D<50d
37
E.3 Illustrations du maillage et des déformées
2 familles de fractures cas 1-2 1 famille de fractures Après maillage Avant maillage cas 3-3 A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives
38
E.3 Illustrations du maillage et des déformées
1 famille de fractures, cas 1-1, D=4m E.3 Illustrations du maillage et des déformées Compression 1 Compression 2 Cisaillement Déformée: Chargement à contrainte imposée A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 2 familles de fractures, cas 2-2, D=12m
39
E.4 Classification numérique: Résultats de calcul
4.1 Remarques générales Taille du VERméca atteinte ● s16 et s26 tendent vers zéro Hypothèse confirmée Orthotropie vérifiée par calcul Conclusion: E.4 Classification numérique: Résultats de calcul A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives ● Symétrie remarquable de S: La moyenne des contraintes et des déformations est effectuée sur tous les nœuds. Symétrie non atteinte par d’autres auteurs comme Min et Jing [2003]
40
1 famille 4.3 Résultats de calcul (1 famille de fractures)
Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Numéro des cas Résultat ellipsoïdal Données:Écriture indicielle Données: Valeur des paramètres géométriques et mécaniques Résultat exact E2 E1= E3 = E G12 n21=n23=n rE2/E n31=n32=n12=n13=nr Cas déduits d’autres cas
41
2 familles 4.4 Résultats de calcul (2 familles de fractures)
Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Numéro des cas Données:Écriture indicielle Résultat ellipsoïdal Modèle 1: Modèle 2: C11,C22,C33,h Résultat exact E2 E1 E3 = E G12 n31=n32=nr n23=n21=n rE2/E n13=n12=n rE1/E Données: Valeur des paramètres géométriques et mécaniques
42
E.5 Classification numérique: Ajustement des résultats
5.1 Raisonnement d’ajustement 1- Analyse d’un massif à 1 famille de fractures d’extension infinie 2- Analyse d’un massif ayant une famille périodique d’extension finie A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 2 1 d Amadei et Goodman [1981] 2
43
5.2 Ajustement des résultats (1 famille)
Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Variation de Conclusion: Pour chaque configuration géométrique (1-1, 1-2…), la variation est linéaire: PE et PG sont des constantes 1 famille d1:infinie
44
PE = f((d/l)a) PG 5.3 Ajustement des résultats (1 famille) l augmente
Choix de la fonction d’ajustement Analyse de la variation de PE et PG en fonction des paramètres mécaniques et géométriques des composantes du massif rocheux A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives l augmente PE et PG augmentent Cas l(m) d(m) d/l PE calculée PG calculée 1-1 0.5 0.27 0.54 0.78 0.58 1-2 1.5 0.18 0.92 0.80 1-3 5.2 0.05 0.97 0.96 2-1 0.50 1.00 0.53 0.36 2-2 0.33 0.8 0.65 2-3 0.10 0.93 3-1 2.00 0.28 0.15 3-2 0.67 0.62 0.46 3-3 0.19 0.91 0.89 d augmente PE et PG diminuent Proposition d’ajustement : = f((d/l)a) PE PG a : constante
45
5.3 Ajustement des résultats (1 famille: Module d’Young E2)
Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Forme généralisée de l’expression d’Amadei et Goodman [1981]
46
5.3 Ajustement des résultats (1 famille: Module de cisaillement G12)
Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Forme généralisée de l’expression d’Amadei et Goodman [1981]
47
?? 5.4 Ajustement des résultats (2 familles: Module d’Young E2)
Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Conclusion: Quelque soit la configuration géométrique, la variation est linéaire: PE ne varie pas. ?? Même formule d’Amadei et Goodman [1981]
48
5.4 Ajustement des résultats (2 familles: Module d’Young E2)
Interprétation du résultat Équivalence entre les deux configurations géométriques 5.4 Ajustement des résultats (2 familles: Module d’Young E2) A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 2 2 Les fractures horizontales : découpage et translation aléatoire dans la direction verticale. Attention! Résultat valable: ● S’il n’y a pas de dispersion de Kn et Kt dans le domaine. ● Si (Kn , Kt ) famille 1 identiques à (Kn , Kt ) famille 2.
49
5.4 Ajustement des résultats (2 familles: Module de cisaillement G12)
Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Même formule d’Amadei et Goodman [1981]
50
E.6 Exemple d’illustration d’un massif sédimentaire
6.1 Présentation du massif Massif rocheux sédimentaire de calcaire existant à Kousba, Liban Nord. Ce massif représente une pente de hauteur moyenne 10m E.6 Exemple d’illustration d’un massif sédimentaire A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives
51
Nécessité d’interpolation sur E et d2
6.2 Estimation des paramètres géométriques et mécaniques A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Existence de deux familles de fractures. d2=0.39m et l2=0.45m, e 10mm, Kn=2 000, Kt=500, E=20 000MPa Écriture indicielle: Nécessité d’interpolation sur E et d2 ?-1-?-1-2
52
6.3 Calcul des propriétés élastiques
Interpolation 3 Interpolation 2 ?-1-?-1-2 A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives Interpolation 1 Interpolation linéaire Résultats exacts Résultat ellipsoïdal Résultat ellipsoïdal Inversion
53
6.3 Calcul des propriétés élastiques
Rotation de base: Axes E1 E2 E3 G23 G13 G12 n12 n13 n21 n23 n31 n32 1’-2’ 335.6 818.2 1861 1192.1 242.3 0.052 0.011 0.127 0.017 0.623 0.399 1-2 703.03 372.22 1255 1725.3 231.90 0.076 0.015 0.040 0.430 0.591 Modèle 3D: Variation de E et de Plan 1-2 Plan 1-3 Plan 2-3
54
A- Objectif de l’étude B- Méthodes de classification des massifs rocheux C- Homogénéisation numérique des milieux fracturés D- Méthode de modélisation numérique E- Classification numérique F- Conclusions et perspectives
55
Conclusions 1- Classification des certains massifs fracturés par des méthodes d’homogénéisation numériques: solution possible et prometteuse. ● Développement et validation d’un outil numérique (HELEN) ● Proposition d’une méthodologie de calcul des propriétés mécanique ● Discussion de la notion du VER (géo. et méca.) ● Discussion du mode de chargement (VER fini) ● Discussion de l’élasticité ellipsoïdale A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 2- Proposition de formules analytiques dans le cas d’extension finie de fractures (généralisation des cas d’Amadei et Goodman [1981])
56
Perspectives www.rocknumerics.com
A. Objectif de l’étude B. Méthodes de classification des massifs rocheux C. Homogénéis-ation numérique des milieux fracturés D. Méthode de modélisation numérique E- Classificati-on numérique F- Conclusions et perspectives 1- Étendre la classification numérique à d’autres configurations de massifs rocheux. 2- Intégrer les éléments joints 3D dans les codes de calcul numériques 3- Valoriser l’outil de calcul numérique (HELEN)
57
Liban - Tel:
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.