Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
1
Et maintenant, le mode : fastoche !
2
Et maintenant, le mode : fastoche !
Mode = valeur modale
3
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent entendue la valeur dominante Calcul/détermination si distribution selon les valeurs: le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 36, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
4
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent entendue la valeur dominante Calcul/détermination si distribution selon les valeurs: le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 36, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
5
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent entendue la valeur dominante Calcul/détermination si distribution selon les valeurs: le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 36, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
6
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs: le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 36, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
7
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs: le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 36, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
8
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs: le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 36, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
9
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 36, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
10
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
11
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
12
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e) valeur modale au sein de la classe modale :
13
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e), soit la classe 3 valeur modale au sein de la classe modale :
14
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e), soit la classe 3 valeur modale au sein de la classe modale :
15
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e), soit la classe 3 valeur modale au sein de la classe modale :
16
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e), soit la classe 3 valeur modale au sein de la classe modale :
17
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e), soit la classe 3 valeur modale au sein de la classe modale :
18
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e), soit la classe 3 valeur modale au sein de la classe modale :
19
Mode Paramètre de tendance centrale Définition : Calcul/détermination
la réponse entendue le plus souvent la valeur dominante Calcul/détermination si distribution selon les valeurs : le np ou la fp le(a) plus élevé(e) (tableau 1.4, p. 5) si distribution en classes (tableau 3.6, p. 37, l’expliquer même si…) identification de la classe modale : le np ou la fp maximal(e), soit la classe 3 valeur modale au sein de la classe modale : Formule « officielle »
20
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si deux classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
21
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si deux classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
22
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si deux classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
23
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si deux classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
24
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si deux classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
25
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si deux classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
26
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si deux classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
27
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si deux classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
28
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si 2 classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
29
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si 2 classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite En cas de variable qualitative, le mode a-t-il du sens ?
30
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si 2 classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite » En cas de variable qualitative, le mode a-t-il du sens ?
31
Mode Formule du mode en cas de distribution en classes :
Dans le cas du tableau 3.6 : mode = 2.042,9 mode plus proche de la borne supér. ou infér. de la classe modale ? mode attiré par la borne supérieure de la classe modale (2.100) prévisible ou pas ? Pourquoi ? information « qualitative » sur le résultat importante à identifier Quid si 2 classes modales successives : exercices 3.21 essayez de prévoir le résultat par réflexion formule efficace même dans un cas « limite » En cas de variable qualitative, le mode a-t-il du sens ?
32
Mode En cas de variable qualitative, le mode a-t-il du sens ?
Dans le cas de ce tableau : sens de dire que le statut matrimonial modal = célibataire ? oui : c’est le statut matrimonial le plus présent dans le tableau sens même si variable pas quantitative ! mode = la réponse la plus souvent entendue à la question posée ! Passons à la médiane et autres quantiles ! p np fp 1. Marié(e) selon la coutume 2 0,18 2. Marié(e) EC 3. Divorcé(e) 1 0,09 4. Célibataire 6 0,55 Total 11 1,00
33
Mode En cas de variable qualitative, le mode a-t-il du sens ?
Dans le cas de ce tableau : sens de dire que le statut matrimonial modal = célibataire ? oui : c’est le statut matrimonial le plus présent dans le tableau sens même si variable pas quantitative ! mode = la réponse la plus souvent entendue à la question posée ! Passons à la médiane et autres quantiles ! p np fp 1. Marié(e) selon la coutume 2 0,18 2. Marié(e) EC 3. Divorcé(e) 1 0,09 4. Célibataire 6 0,55 Total 11 1,00
34
Mode En cas de variable qualitative, le mode a-t-il du sens ?
Dans le cas de ce tableau : sens de dire que le statut matrimonial modal = célibataire ? oui : c’est le statut matrimonial le plus présent dans le tableau sens même si variable pas quantitative ! mode = la réponse la plus souvent entendue à la question posée ! Passons à la médiane et autres quantiles ! p np fp 1. Marié(e) selon la coutume 2 0,18 2. Marié(e) EC 3. Divorcé(e) 1 0,09 4. Célibataire 6 0,55 Total 11 1,00
35
Mode En cas de variable qualitative, le mode a-t-il du sens ?
Dans le cas de ce tableau : sens de dire que le statut matrimonial modal = célibataire ? oui : c’est le statut matrimonial le plus présent dans le tableau sens même si variable pas quantitative ! mode = la réponse la plus souvent entendue à la question posée ! Passons à la médiane et autres quantiles ! p np fp 1. Marié(e) selon la coutume 2 0,18 2. Marié(e) EC 3. Divorcé(e) 1 0,09 4. Célibataire 6 0,55 Total 11 1,00
36
Mode En cas de variable qualitative, le mode a-t-il du sens ?
Dans le cas de ce tableau : sens de dire que le statut matrimonial modal = célibataire ? oui : c’est le statut matrimonial le plus présent dans le tableau sens même si variable pas quantitative ! mode = la réponse la plus souvent entendue à la question posée ! Passons à la médiane et autres quantiles ! p np fp 1. Marié(e) selon la coutume 2 0,18 2. Marié(e) EC 3. Divorcé(e) 1 0,09 4. Célibataire 6 0,55 Total 11 1,00
37
Mode En cas de variable qualitative, le mode a-t-il du sens ?
Dans le cas de ce tableau : sens de dire que le statut matrimonial modal = célibataire ? oui : c’est le statut matrimonial le plus présent dans le tableau sens même si variable pas quantitative ! mode = la réponse le plus souvent entendue à la question posée ! Passons à la médiane et autres quantiles ! p np fp 1. Marié(e) selon la coutume 2 0,18 2. Marié(e) EC 3. Divorcé(e) 1 0,09 4. Célibataire 6 0,55 Total 11 1,00
38
Mode En cas de variable qualitative, le mode a-t-il du sens ?
Dans le cas de ce tableau : sens de dire que le statut matrimonial modal = célibataire ? oui : c’est le statut matrimonial le plus présent dans le tableau sens même si variable pas quantitative ! mode = la réponse le plus souvent entendue à la question posée ! Passons à la médiane et autres quantiles ! p np fp 1. Marié(e) selon la coutume 2 0,18 2. Marié(e) EC 3. Divorcé(e) 1 0,09 4. Célibataire 6 0,55 Total 11 1,00
39
Médiane et autres quantiles
La médiane au départ d’une SUITE ORDONNÉE (et donc var. qualitative) définition : valeur au centre de la distribution « 50, 50 » : 50% avant et 50% après « autant à gauche qu’à droite » ou « autant avant qu’après » paramètre de tendance centrale par excellence Calcul / détermination si données NON GROUPÉES : si « n » impair ex. : 1, 4, 12 4 si « n » pair ex. : 1, 4, 12, 14 (4+12)/2 = 8 si données GROUPÉES en classes : la définition demeure (50, 50) Mais ne plus penser aux règles pour données non groupées généralisation : médiane et autres QUANTILES
40
Médiane et autres quantiles
Nomenclature (p. 35) appellation générale : « quantile d’ordre k » définition : valeur qui laisse k % des observations à sa gauche dans une suite ordonnée k % des observations sont inférieurs au quantile d’ordre k et évidemment « 100% - k% » lui sont supérieurs Types de quantile quartiles : Q1 = 25% à gauche ; Q2 = 50% à gauche ; Q4 = 100% à gauche déciles : D0 = 0% ; D1 = 10% ; D2 = 20% ; D5 = 50% ; D9 = 90% centiles : C0 = 0% ; C1 = 1% ; C76 = 76% ; C100 = 100% médiane = Q2 = D5 = C50 ! Remarque : confusion possible entre : « Q » pour « Quantile » : quantile d’ordre k = Qk « Q » pour « Quartile » : 1er quartile = Q1 pour les plaintes : au Bureau International de la Nomenclature Statistique
41
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
42
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
43
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
44
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
45
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
46
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
47
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
48
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
49
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
50
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
51
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 20,5 : ● oui, on coupe des observations en morceaux ● calcul sans « état d’âme » ● + hypothèses
52
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 Interprétation : on veut trouver la valeur telle que ● 20,5 observations à gauche ● 20,5 observations à droite
53
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 Interprétation : on veut trouver la valeur telle que ● 20,5 observations à gauche ● 20,5 observations à droite
54
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 Interprétation : on veut trouver la valeur telle que ● 20,5 observations à gauche ● 20,5 observations à droite
55
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 Exercice
56
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 1er quartile, k = 25%, 41 * 0,25 = 10,25 8e décile, k = 80%, 41 * 0,80 = 32,8 96e centile, k = 96%, 41 * 0,96 = 39,36
57
Médiane et autres quantiles
Quantile d’ordre k Valeur qui laisse k% des observations à sa gauche Formule avec les np : k = l’objectif à atteindre en % = jusqu’où aller le long de la suite ordonnée à transformer en nombre d’observations objectif pour Qk = n * k exemples (tableau 3.6, p. 37) : médiane, k = 50%, 41 * 0,50 = 20,5 1er quartile, k = 25%, 41 * 0,25 = 10,25 8e décile, k = 80%, 41 * 0,80 = 32,8 96e centile, k = 96%, 41 * 0,96 = 39,36
58
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
59
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
60
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
61
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
62
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
63
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
64
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
65
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
66
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
67
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
68
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9 Exercice
69
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
70
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » comment la repérer ? la 1re classe dont l’effectif cumulé (Nk) dépasse/atteint l’objectif la classe qui contient l’objectif en termes de Nk entre « pas assez » et « trop » loin exemples (tableau 3.6, p. 37) : Conclusion qualitative : le quantile est dans la classe repérée Quantile Objectif « Pas assez » « Trop » N° classe (q) Médiane 20,50 N3 = 18 N4 = 26 q = 4 1er quartile 10,25 N2 = 8 q = 3 8e décile 32,80 N5 = 32 N6 = 36 q = 6 96e centile 39,36 N8 = 39 N9 = 40 q = 9
71
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » Biq = borne inférieure de la classe p Quantile Objectif N° classe (q) BIq Médiane 20,50 q = 4 2.100 1er quartile 10,25 q = 3 1.900 8e décile 32,80 q = 6 2.500 96e centile 39,36 q = 9 3.100
72
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Quantile Objectif N° classe (q) BIq Médiane 20,50 q = 4 2.100 1er quartile 10,25 q = 3 1.900 8e décile 32,80 q = 6 2.500 96e centile 39,36 q = 9 3.100
73
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Quantile Objectif N° classe (q) BIq Médiane 20,50 q = 4 2.100 1er quartile 10,25 q = 3 1.900 8e décile 32,80 q = 6 2.500 96e centile 39,36 q = 9 3.100
74
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Quantile Objectif N° classe (q) BIq Médiane 20,50 q = 4 2.100 1er quartile 10,25 q = 3 1.900 8e décile 32,80 q = 6 2.500 96e centile 39,36 q = 9 3.100
75
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Nq-1 = déjà à la borne inférieure (nombre d’observations à gauche de Biq) Quantile Objectif N° classe (q) BIq Nq-1 Médiane 20,50 q = 4 2.100 18 1er quartile 10,25 q = 3 1.900 8 8e décile 32,80 q = 6 2.500 32 96e centile 39,36 q = 9 3.100 39
76
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Nq-1 = déjà à la borne inférieure (nombre d’observations à gauche de BIq) Quantile Objectif N° classe (q) BIq Nq-1 Médiane 20,50 q = 4 2.100 18 1er quartile 10,25 q = 3 1.900 8 8e décile 32,80 q = 6 2.500 32 96e centile 39,36 q = 9 3.100 39
77
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Nq-1 = déjà à la borne inférieure (nombre d’observations à gauche de BIq) Quantile Objectif N° classe (q) BIq Nq-1 Médiane 20,50 q = 4 2.100 18 1er quartile 10,25 q = 3 1.900 8 8e décile 32,80 q = 6 2.500 32 96e centile 39,36 q = 9 3.100 39
78
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Nq-1 = déjà à la borne inférieure (nombre d’observations à gauche de BIq) Quantile Objectif N° classe (q) BIq Nq-1 Médiane 20,50 q = 4 2.100 18 1er quartile 10,25 q = 3 1.900 8 8e décile 32,80 q = 6 2.500 32 96e centile 39,36 q = 9 3.100 39
79
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Nq-1 = déjà à la borne inférieure (nombre d’observations à gauche de BIq) ((n*k) - Nq-1 ) = ce qui manque à BIq pour atteindre l’objectif
80
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Nq-1 = déjà à la borne inférieure (nombre d’observations à gauche de BIq) ((n*k) - Nq-1 ) = ce qui manque à BIq pour atteindre l’objectif nq = contenu du « réservoir » où aller puiser ce qui manque Quantile Objectif N° classe (q) BIq Nq-1 nq Médiane 20,50 q = 4 2.100 18 8 1er quartile 10,25 q = 3 1.900 10 8e décile 32,80 q = 6 2.500 32 4 96e centile 39,36 q = 9 3.100 39 1
81
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Nq-1 = déjà à la borne inférieure (nombre d’observations à gauche de BIq) ((n*k) - Nq-1 ) = ce qui manque à BIq pour atteindre l’objectif nq = contenu du « réservoir » où aller puiser ce qui manque Quantile Objectif N° classe (q) BIq Nq-1 nq Médiane 20,50 q = 4 2.100 18 8 1er quartile 10,25 q = 3 1.900 10 8e décile 32,80 q = 6 2.500 32 4 96e centile 39,36 q = 9 3.100 39 1
82
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Nq-1 = déjà à la borne inférieure (nombre d’observations à gauche de BIq) ((n*k) - Nq-1 ) = ce qui manque à BIq pour atteindre l’objectif nq = contenu du « réservoir » où aller puiser ce qui manque Quantile Objectif N° classe (q) BIq Nq-1 nq Médiane 20,50 q = 4 2.100 18 8 1er quartile 10,25 q = 3 1.900 10 8e décile 32,80 q = 6 2.500 32 4 96e centile 39,36 q = 9 3.100 39 1
83
Médiane et autres quantiles
Quantile d’ordre k : k = l’objectif à atteindre en % CLASSE du quantile ou « classe q » BIq = borne inférieure de la classe q Nq-1 = déjà à la borne inférieure (nombre d’observations à gauche de BIq) ((n*k) - Nq-1 ) = ce qui manque à BIq pour atteindre l’objectif nq = contenu du « réservoir » où aller puiser ce qui manque c = amplitude de la classe, soit 200 dans le cas du tableau 3.6
84
Médiane et autres quantiles
Application de la formule au cas de la médiane Interprétation à gauche de 2.162,5, 50% des observations… et à droite aussi à 2.162,5 : objectif atteint généralisation : à Qk, (k*n) oberstaions à Qk, k% des observations Médiane « attirée » par la borne infé. de la classe 4. Prévisible ? Quantile Objectif N° classe (q) BIq Nq-1 nq Médiane 20,50 q = 4 2.100 18 8 1er quartile 10,25 q = 3 1.900 10 8e décile 32,80 q = 6 2.500 32 4 96e centile 39,36 q = 9 3.100 39 1
85
Médiane et autres quantiles
Application de la formule au cas de la médiane Interprétation : selon la théorie, à gauche de 2.162,5, 50% des observations… et à droite aussi à 2.162,5 : objectif atteint généralisation : à Qk, (k*n) obersvations à Qk, k% des observations Médiane « attirée » par la borne infé. de la classe 4. Prévisible ? Quantile Objectif N° classe (q) BIq Nq-1 nq Médiane 20,50 q = 4 2.100 18 8 1er quartile 10,25 q = 3 1.900 10 8e décile 32,80 q = 6 2.500 32 4 96e centile 39,36 q = 9 3.100 39 1
86
Médiane et autres quantiles
Application de la formule au cas de la médiane Interprétation : selon la théorie, à gauche de 2.162,5, 50% des observations… et à droite aussi à 2.162,5 : objectif des 50 % atteint généralisation : à Qk, (k*n) obersvations à Qk, k% des observations Médiane « attirée » par la borne infé. de la classe 4. Prévisible ? Quantile Objectif N° classe (q) BIq Nq-1 nq Médiane 20,50 q = 4 2.100 18 8 1er quartile 10,25 q = 3 1.900 10 8e décile 32,80 q = 6 2.500 32 4 96e centile 39,36 q = 9 3.100 39 1
87
Médiane et autres quantiles
Application de la formule au cas de la médiane Interprétation : selon la théorie, à gauche de 2.162,5, 50% des observations… et à droite aussi à 2.162,5 : objectif des 50 % atteint généralisation : à Qk, (k*n) obersvations à Qk, k% des observations Médiane « attirée » par la borne infé. de la classe 4. Prévisible ? Quantile Objectif N° classe (q) BIq Nq-1 nq Médiane 20,50 q = 4 2.100 18 8 1er quartile 10,25 q = 3 1.900 10 8e décile 32,80 q = 6 2.500 32 4 96e centile 39,36 q = 9 3.100 39 1
88
Médiane et autres quantiles
Application de la formule au cas de la médiane Interprétation : selon la théorie, à gauche de 2.162,5, 50% des observations… et à droite aussi à 2.162,5 : objectif des 50 % atteint généralisation : à Qk, (k*n) obersvations à Qk, k% des observations Médiane « attirée » par la borne infé. de la classe 4. Prévisible ? Quantile Objectif N° classe (q) BIq Nq-1 nq Médiane 20,50 q = 4 2.100 18 8 1er quartile 10,25 q = 3 1.900 10 8e décile 32,80 q = 6 2.500 32 4 96e centile 39,36 q = 9 3.100 39 1
89
Médiane et autres quantiles
Application de la formule au cas de la médiane Interprétation : selon la théorie, à gauche de 2.162,5, 50% des observations… et à droite aussi à 2.162,5 : objectif des 50 % atteint généralisation : à Qk, (k*n) obersvations à Qk, k% des observations Médiane « attirée » par la borne infé. de la classe 4. Prévisible ? Quantile Objectif N° classe (q) BIq Nq-1 nq Médiane 20,50 q = 4 2.100 18 8 1er quartile 10,25 q = 3 1.900 10 8e décile 32,80 q = 6 2.500 32 4 96e centile 39,36 q = 9 3.100 39 1
90
Médiane et autres quantiles
Considérations finales (après exercices) à Biq : pas assez ajouter une partie de la classe calcul entre crochets Logique entre les éléments : Avec les fréquences : Attention : dans un calcul, ne pas mélanger des np et des fp
91
Médiane et autres quantiles
Considérations finales (après exercices) à BIq : pas assez ajouter une partie de la classe calcul entre crochets Logique entre les éléments : Avec les fréquences : Attention : dans un calcul, ne pas mélanger des np et des fp
92
Médiane et autres quantiles
Considérations finales (après exercices) à BIq : pas assez ajouter une partie de la classe calcul entre crochets Logique entre les éléments : Avec les fréquences : Attention : dans un calcul, ne pas mélanger des np et des fp
93
Médiane et autres quantiles
Considérations finales (après exercices) à BIq : pas assez ajouter une partie de la classe calcul entre crochets Logique entre les éléments : Avec les fréquences : Attention : dans un calcul, ne pas mélanger des np et des fp
94
Médiane et autres quantiles
Considérations finales (après exercices) à BIq : pas assez ajouter une partie de la classe calcul entre crochets Logique entre les éléments : Avec les fréquences : Attention : dans un calcul, ne pas mélanger des np et des fp
95
Médiane et autres quantiles
Considérations finales (après exercices) à BIq : pas assez ajouter une partie de la classe calcul entre crochets Logique entre les éléments : Avec les fréquences : Attention : dans un calcul, ne pas mélanger des np et des fp
96
Médiane et autres quantiles
Considérations finales (après exercices) à BIq : pas assez ajouter une partie de la classe calcul entre crochets Logique entre les éléments : Avec les fréquences : Attention : dans un calcul, ne pas mélanger des np et des fp
97
Médiane et autres quantiles
Considérations finales (après exercices) à BIq : pas assez ajouter une partie de la classe calcul entre crochets Logique entre les éléments : Avec les fréquences : Attention : dans un calcul, ne pas mélanger des np et des fp
98
Médiane et autres quantiles
Considérations finales (après exercices) à BIq : pas assez ajouter une partie de la classe calcul entre crochets Logique entre les éléments : Avec les fréquences : Attention : dans un calcul, ne pas mélanger des np et des fp Faire un ou deux calculs avec les fréquences
99
Médiane et autres quantiles
Considérations finales (après exercices) C0 = & Q4 = 3.700 Prévisibles. Pourquoi ? Formule fiable : OK aussi dans les cas « limites »
100
Médiane et autres quantiles
Considérations finales (après exercices) C0 = & Q4 = 3.700 Prévisibles. Pourquoi ? Formule fiable : OK aussi dans les cas « limites »
101
Médiane et autres quantiles
Considérations finales (après exercices) C0 = & Q4 = 3.700 Prévisibles. Pourquoi ? Formule fiable : OK aussi dans les cas « limites »
102
Moyenne, mode ou médiane ?
Que choisir pour analyser une situation ? Quid en cas de variables qualitatives ou quantitatives ? Paramètres de tendance centrale : FIN Exercices conseillés : 3.6, 3.10, 3.18…
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.