La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Fonctionnement du béton armé en flexion

Présentations similaires


Présentation au sujet: "Fonctionnement du béton armé en flexion"— Transcription de la présentation:

1 Fonctionnement du béton armé en flexion

2 Le principe du béton armé en flexion
le béton reprend les efforts de compression les aciers reprennent les efforts de traction. Un élément en béton armé est optimisé lorsque les matériaux béton et acier travaillent au maximum de leurs possibilités. (si l’acier travaille à seulement 80 % de ses possibilités, il faudra ajouter 20 % d’acier en plus pour assurer l’équilibre)

3 Diagramme contrainte – déformation de l’acier ( EC 2 ) :
L’acier travaillera au maximum à partir d’une contrainte fyd L’Eurocode 2 limite généralement l’allongement unitaire de l’acier à 10 ‰ L’acier travaillera au maximun lorsque : l (2.174 ‰) < s < 10 ‰

4 Diagramme contrainte – déformation du béton ( EC 2 ) :
Le béton travaillera au maximum à partir d’une contrainte c = fcu, c’est à dire pour un allongement unitaire du béton supérieur à c = 2 ‰. L’ Eurocode 2 limite l’allongement unitaire du béton à 3,5 ‰ Le béton travaillera au maximun lorsque : 2 ‰ <  c <3,5 ‰

5 Il faudra donc dimensionner nos éléments de manière à respecter :
l (2.17 ‰) < s < 10 ‰ Acier 2 ‰ <  c < 3,5 ‰ Béton On respecte le règlement et on optimise l’élément en béton armé.

6 Le diagramme déformation de la section a l’allure suivante :
Prenons le cas d’un exemple d’une poutre classique soumise à la flexion. Le diagramme déformation de la section a l’allure suivante : 10 d y 2.17 Dans cet exemple, la section est ici bien dimensionnée car les déformations de l’acier et du béton sont dans les intervalles énoncés précédemment. Les matériaux travaillent donc de manière efficace.

7 Théorème de Thalès : 3,5/ yAB = 10/(d- yAB) d’ou yAB = 0.259 d
Le moment de référence MAB est le moment sollicitant une section permettant d’atteindre simultanément s = 10 ‰ et c = 3,5 ‰ Diagramme des déformations d 3,5 ‰ fcu yAB 0,8yAB Ast . fyd b MAB Diagramme des contraintes 10 ‰ On obtient dans ce cas un axe neutre à une distance yAB = d de la fibre supérieure de la poutre. Théorème de Thalès : 3,5/ yAB = 10/(d- yAB) d’ou yAB = d Calcul de MAB : la section est en équilibre ⇨ on pose Σ Mt/aciers = 0 MAB = 0,8 yAB fcu b (d - 0,4 yAB) avec yAB=0.259 d ⇨ MAB = 0,186 b d² fcu

8 Remarques : MAB est un moment « virtuel » qui engendrerait s = 10 ‰ et c = 3,5 ‰. MAB ne dépend pas du chargement. Mu est le réel qui sollicite la section. Mu dépend du chargement (descente de charge…) On compare Mu à MAB Cas 1 : Mu ≤ MAB : pivot A s = 10 ‰ et c ≤ 3,5 ‰ Le « risque » est que le béton travaille mal (si c ≤ 2 ‰) 2 inconnues : La positon de l’axe neutre : y La section d’armature tendue : Ast y d c 10 ‰= s Pivot A

9 Σ F/x = 0 : 0,8 y b fcu = fyd Ast (1)
Ast . fyd b Mu Diagramme des contraintes 2 inconnues ⇨ 2 équations Σ F/x = 0 Σ Mt/aciers = 0 Σ F/x = : 0,8 y b fcu = fyd Ast (1) Σ Mt/aciers = 0 : Mu = 0,8 y b fcu (d – 0.4 y) (2) L’équation (2) donne y. L’équation (1) donnera ensuite Ast (2) : Mu = 0,8 y b fcu (d – 0.4 y) ⇨ y² - 2,5 d y = 0 ⇨ y = 1,25 d (c’est la solution « cohérente » de l’équation) : 0,8 y b fcu = fcu Ast ⇨ Ast =

10 s = 10 ‰ ⇨ les aciers W bien car s > l = 2,17 ‰
Le béton travaille-t-il bien ? s = 10 ‰ ⇨ les aciers W bien car s > l = 2,17 ‰ c ≤ 3,5 ‰ ⇨ Il faut calculer c car le béton W bien seulement si c > 2 ‰ Connaissant y, cela permet de calculer c grâce au diagramme des déformations : y d bc 10 ‰ = s Théorème de Thalès : c /y = 10/(d-y) d’ou c = 10y / (d-y) Si c > 2 ‰ alors le béton W bien. Si c < 2 ‰ alors le béton W mal (la section est surdimensionnée) ⇨ on redimensionne la section (ex : on diminue h)

11 Remarques concernant les unités
Le plus simple est de respecter les unités suivantes : Les longueurs (b, h, d, y) sont en mètres (m) Fck, Fyk, Fcu, Fyd sont en MPa, Mu en MN (Les « Mégas » s’annuleront entre eux) Les sections d’aciers Ast et Asc sont en m² ( multiplier ensuite par 104 si on veut des cm²)

12

13 Cas 2 : Mu > MAB : pivot B c = 3,5 ‰ et s < 10 ‰ s Pivot B y
d y s Pivot B Le « risque » est que les aciers travaillent mal (si s < 2,17 ‰)

14 Théorème de Thalès : 3,5/yl = 10/(d-yl) d’ou yl = 0.618 d
Le moment de plastification Ml est le moment sollicitant une section permettant d’atteindre s = l = 2,17 ‰ (limite de la zone élastique / plastique) Diagramme des déformations d 3,5 ‰ b fcu yl 0,8yl Ast . fyd Ml Diagramme des contraintes 2,17 ‰ On obtient dans ce cas un axe neutre à une distance yl = d de la fibre supérieure de la poutre. Théorème de Thalès : 3,5/yl = 10/(d-yl) d’ou yl = d Calcul de Ml : la section est en équilibre ⇨ on pose Σ Mt/aciers = 0 Ml = 0,8 yl fcu b (d - 0,4 yl) avec yl=0.618 d ⇨ Ml = 0,372 b d² fcu

15 Σ F/x = 0 : 0,8 y b fcu = fsu Ast (1)
d y 0,8y Ast . fyd b Mu Diagramme des contraintes 2 inconnues ⇨ 2 équations Σ F/x = 0 Σ Mt/aciers = 0 Σ F/x = : 0,8 y b fcu = fsu Ast (1) Σ Mt/aciers = 0 : Mu = 0,8 y b fcu (d – 0.4 y) (2) L’équation (2) donne y. L’équation (1) donnera ensuite Ast (2) : Mu = 0,8 y b fcu (d – 0.4 y) ⇨ y² - 2,5 d y = 0 ⇨ y = 1,25 d (c’est la solution « cohérente » de l’équation) : 0,8 y b fcu = fcu Ast ⇨ Ast =

16 ⇨ y = 1,25 d 1- ⇨ Ast = Les aciers travaillent-t-il bien ?
Comparons Mu à Ml : moment de plastification des aciers ⇨ y = 1,25 d 1- ⇨ Ast = Si Mu < Ml ⇨ s > 2,17 ‰ ⇨ les aciers W bien Le calcul est identique au pivot A :

17 Si Mu > Ml ⇨ s < 2,17 ‰ ⇨ les aciers W mal !
z Les charges sont trop importantes / poutre ⇨ besoin de plus de béton comprimé pour résister. ⇨ l’axe neutre descend. ⇨ le bras de levier entre le centre de poussée du béton et des aciers diminue ⇨ N’ayant pas de bras de levier suffisant, les aciers travaillent dans de mauvaises conditions (s ≤ 2,17 ‰)

18 Solutions pour optimiser dans la cas ou Mu > Ml
On voudrait avoir Mu < Ml sachant que Ml = 0,372 b d² fcu fck ⇨ fcu ⇨ Ml b ou d ⇨ Ml Ajout Asc ⇨ Les aciers comprimés « aident » le béton comprimé ⇨ réduit la zone de béton comprimé ⇨ monte ainsi l’axe neutre ⇨ augmente le bras de levier z ⇨ permet aux aciers de bien travailler z

19 Σ F/x = 0 : Asc. fyd + 0,8 y b fcu = fyd Ast (1)
On ajoute juste assez d’aciers comprimés pour remonter l’axe neutre de y à yl. On aura ainsi s = 2,17 ‰) Diagramme des déformations d 3,5 ‰ b fcu Yl =0,618d 0,8yl Ast . fyd Mu Diagramme des contraintes 2,17 ‰ Asc . fyd d’ Il y a 2 inconnues Ast et Asc (y est connu : y = yl =0.618 d) Σ F/x = : Asc. fyd + 0,8 y b fcu = fyd Ast (1) Σ Mt/aciers = 0 : Mu = 0,8 y b fcu (d – 0.4 y) + Asc. fyd (d – d’ ) (2) Ml !!!!!

20 Asc = Ast = Asc + avec yl = 0.618 d L’équation (2) donne :
Le règlement impose que la part d’efforts repris par les aciers comprimés ne dépasse pas 40 % de l’effort total, c’est à dire : Il faut : Mu - Ml < 0,4 Mu (sinon, on redimensionne la poutre) En présence d’Asc, il faut mettre des cadres tous les 12 Ø des Asc (pour éviter le flambement des aciers comprimés). Exemple : si les Asc sont en Ø 12, alors les cadres sont espacés de 14 cm.

21

22 Synthèse : Voir la fiche du dimensionnement à l’ ELU d’une section rectangulaire

23 w w w.l e s d e n t s d u w e b . c o m


Télécharger ppt "Fonctionnement du béton armé en flexion"

Présentations similaires


Annonces Google