La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

ILD/Calice and ATLAS-HGTD* Si-W high granularity calorimeter LPNHE

Présentations similaires


Présentation au sujet: "ILD/Calice and ATLAS-HGTD* Si-W high granularity calorimeter LPNHE"— Transcription de la présentation:

1 ILD/Calice and ATLAS-HGTD* Si-W high granularity calorimeter LPNHE
Physique des particules et hadronique ILD/Calice and ATLAS-HGTD* Si-W high granularity calorimeter LPNHE 2016/05/10 *High Granularity Timing Detector

2 Composition de l’équipe Calice + ATLAS-HGTD
Responsable scientifique local: Didier Lacour pour ILD/Calice – en charge de l’activité HGTD-ATLAS Giovanni Calderini chef du groupe ATLAS Liste des chercheurs participants: 2 permanents ILD/Calice Jean-Eudes Augustin Emérite 20% Didier Lacour DR HDR 30% - autre projet: ATLAS-HGTD ATLAS-Top ATLAS-Calibration-calo 5 permanents ATLAS/HGTD Marco Bomben MCF 10% - autre projet: ATLAS-ITK Giovanni Calderini DR HDR 5% - autre projet: ATLAS-ITK ATLAS-Higgs Didier Lacour DR HDR 40% - autre projet: ILD/Calice ATLAS-Top ATLAS-Calibration-calo Bertrand Laforge PR HDR 10% - autre projet: ATLAS-Higgs Giovanni Marchiori CR1 HDR 10% - autre projet: ATLAS-ITK ATLAS-Higgs Groupe Evaluation AERES janvier 2011 2

3 Projets Techniques ILD/Calice
Responsable scientifique local: Didier Lacour Responsable technique local: Jacques David Contribution à la construction d’un prototype de calorimètre électromagnétique Si-W pour le détecteur ILD: assemblage des senseurs silicium sur PCB – caractérisation des senseurs – métrologie Liste des chercheurs participants: JE Augustin (20%) D. Lacour (30%) Liste des IT participants: 5 permanents Jacques David IE électronique 25% Patrick Ghislain AI mécanique 25% Laurence Lavergne IR instrumentation 10% Jean-Marc Parraud AI électronique 25% Daniel Vincent IR mécanique 5% Groupe Evaluation AERES janvier 2011 3

4 Projets Techniques ATLAS-HGTD
Responsable scientifique local: Didier Lacour Responsable technique local: Laurence Lavergne Contribution à la conception d’un détecteur Silicium type Calice pour la partie avant d’ATLAS – LHC haute luminosité phase 2 : Dessin des senseurs, assemblage de prototype, test en faisceau, optimisation du design (simulation) Liste des chercheurs participants: Marco Bomben (10%) Giovanni Calderini (5%) Didier Lacour (40%) Bertrand Laforge (10%) Giovanni Marchiori (10%) Liste des IT participants: 6 permanents Francesco Crescioli IR électronique 5% Jacques David IE électronique 25% Patrick Ghislain AI mécanique 25% Laurence Lavergne IR instrumentation 10% Jean-Marc Parraud AI électronique 25% Daniel Vincent IR mécanique 5% Groupe Evaluation AERES janvier 2011 4

5 Faits marquants Calice + ATLAS-HGTD
Assembly done with gluing and positioning robots: automated system developed in the framework of the Calice R&D program for ILD SiW EM calorimeter and for ATLAS high granularity timing detector Electrical test to control the sensors before gluing, to check the short cuts immediately after gluing, to measure the I(V) curves PCB Metrology using a coordinate measuring machine (tri-dim machine): squaring, parallel edges, size, thickness flatness Gluing test with glass plates Gluing and positioning robots Active Sensor Unit after gluing ILD calo prototype ATLAS HGTD prototype 7 layers assembled for 2015 test beam ILD prototype – 5 layers will be done in 2016 ATLAS R&D in progress – A four layer prototype will be built in 2016 and beam tested Glue radiation hardness and thermal effects will be tested Industrialization of the process considered – preliminary contacts with Eolane company Future considerations: test beam data analysis – Silvaco simulation – MC detector optimization

6 Faits marquants Calice + ATLAS-HGTD
N-in-p standard sensors for the HGTD test beam: 5x5 pixels - 3x3mm² pixel 20 mm 15 mm 4 Guard rings (GR): ~0.8 mm in total (reuse old design) Each guard-ring: ~20 microns implant + aluminum overhang + gap between neighbouring GRs Exploit joint ATLAS-CMS production at FBK which includes several FE-I4 sensors (2x2 cm2), to produce one sensor compatible with HGTD-testbeam readout LGAD sensors: Layout proposed by CNM to fit the gluing process Layout masks glue dots CNM wafer production HGTD assembly process before the integration in ATLAS Elementary components Sub-structures - naming Assembly steps Possible and/or mandatory tests at each stage

7 Evolution anticipée (3-5 ans)
La poursuite des activités de R&D en calorimétrie Si-W dépend de deux points : Décision sur la construction de ILC – Engagement IN2P3 dans ILD : 2018 ? Décision sur la construction de ATLAS-HGTD – choix de la technologie – Engagement de l’IN2P3 et ATLAS France : fin 2017 ? Personnels Retraite Jean-François Huppert 2015 : informatique Départ Laurence Lavergne 2ième semestre 2016 : activités transversales senseurs Calice et HGTD Retraite Jacques David – Patrick Ghislain 2021 PostDoc Calice-HGTD demandé et non obtenu en 2016 Activités Simulation MC pour l’optimisation de la géométrie du détecteur, de la dimension des cellules, études du taux d’occupancy, étude de timing et des jets à l’avant etc… Simulation Silvaco pour le design et l’optimisation des senseurs Conception, suivi de fabrication et tests de prototype Test en faisceau, analyse des données Développement du processus d’assemblage des éléments du détecteur Construction et intégration du détecteur dans ATLAS et ILD Groupe Evaluation AERES janvier 2011 7

8 Attente (vis-à-vis de l’IN2P3)
Personnels IE informatique temps réel Un PostDoc R&D Physicien instrumentaliste et optimisation détecteur – Etudes des cas de physique Finances D’ici les prises des décisions ILC et/ou ATLAS, un maintien du budget permettant la poursuite des activités de R&D en complément de AIDA2020 Une fois les décisions ILC et/ou ATLAS prises, un budget en rapport avec les engagements IN2P3 Autres - Soutien coordination activités ILC IN2P3 Groupe Evaluation AERES janvier 2011 8

9 [ + Tous les documents jugés utiles pour la discussion]
BACKUP [ + Tous les documents jugés utiles pour la discussion] Groupe Evaluation AERES janvier 2011 9

10

11

12

13

14

15 Calice Active Sensor Unit (ASU)
Si sensors PCB Electronics Sensors are glued with a 20um precision and reproducible process. Glue is dispended in order to form 200 um thick dots.

16 Calice detector layers assembly and tests
Assembly done with gluing and positioning robots: automated system developed in the framework of the Calice R&D program Electrical test to control the sensors before gluing, to check the short cuts immediately after gluing to measure the I(V) curves Metrology using a coordinate measuring machine (tri-dim machine): squaring, parallel edges, size, thickness flatness

17 Gluing and positioning automated process
Cartesian robot (XYZ monitoring) : arm supporting suction cup and camera. Control cabinet of the positioning robot Laying platform for one wafer Turnover platform for 4 sensors PCB plate Gluing robot Laying transfer platform (GelPak + wafer) Glue dispenser Syringes for glue deposition 17

18 Assembly steps Position 4 sensors, one by one (cartesian robot):
each sensor is taken from the transfer plate and driven to the turnover plate to be placed at the right position. Done four times, very precisely thanks to a map which has been defined before. The position is also checked with the camera. The sensors are maintained with a vacuum pressure system. Deposit glue onto the PCB (dispenser robot): 2 syringes are used to dispense glue. The PCB is also maintained with a vacuum pressure system. The plate with 4 sensors turns over on PCB. The two plates are maintained together during the glue polymerisation. Heating resistances are used for the polymerisation (40°C)  

19 Gluing tests on different geometries
 Calice geometry 4 wafers / PCB Sensor parameters Dimension up to 90 x 90 mm Pads 5 x 5 mm Thickness 330 mm 256 X 4 = 1024 glue dots Glue dots After gluing (glass plate)

20 Gluing tests on different geometries
First test with dummy boards with copper pads using Calice pattern Matrix pitch : 5 mm Pad dimension : 3 x 3 mm, limit for the process Decrease the capacitance value

21 Gluing test on 3 X 3 and 2 X 2 prototype geometry
4 geometries : 3 X 3 matrix Copper pads : 1.7*1.7 mm² Inter-pad gap : 0.3 mm 2 X 2 matrix 2 X 2 matrix Copper pads : 2.7*2.7 mm² To simulate 3*3 pads PIN diode 2*2 pads LGAD

22 Gluing test on 3 X 3 and 2 X 2 prototype geometry
The dummy PCB is extremely flat PCB, and is not equipped ( no components) Glass plate : 9 cm X 9cm 300 mm thick

23 Test on 3 X 3 mm2 prototype geometry: 3 X 3 and 2 X 2 pads
Dispenser pressure: 2 – 3 bar Glue thickness: 200 mm Test on 2 X 2 mm2 prototype geometry Dispenser pressure: 0.5 bar Need to reduce the quantity of glue to prevent short-circuits Minimum glue thickness for mechanical support = 150 mm Then, the quantity of glue is no longer sufficient to ensure electrical contact

24 Test on round copper pads
Gluing test with round copper pads smaller than the glue dots (as small as possible) to decrease the PCB capacitance Pad diameter : 1.7 mm 5.5 mm X 5.5 mm matrix (PIN diode) 3 mm X 3 mm matrix (LGAD)

25 Radiation hardness of the glue at JSI (AIDA2020)
Pitch mm Pads surface mm² inter-pixel gap Pressure bar Glue thickness mechanical strength / electrical contact / no short-circuit 5.5 5 X 5 0.5 3 - 4 200 OK 3 2.7 X 2.7 0.3 2 – 3 2 1.7 X 1.7 150 NO 5.5 and 3 1.7 diameter 2-3 For the time being, 3 X 3 mm2 Si pixels geometry is compatible with the gluing process – small round copper pads can be used (PCB capacitance) The method does not allow an electrical contact for 2 X 2 mm2 Si pads geometry Radiation hardness of the glue at JSI (AIDA2020) Fluence levels: n/cm², n/cm², n/cm² - Samples : electrical et mechanical behavior of the glue after irradiation. Application approved and registered - electronic registration for the European Commission done Containers for test samples sent by V. Cindro Study the thermo-mechanical effects : thermal aging at -40°C of one ASU

26 Detector modules available for ATLAS integration
Example of one half disk with 7 modules Exact number depends on the final design Example Module 4 (white rectangle): 2 rows of 4 staves 4 half disks to be integrated in ATLAS cavern Module Number 1 2 3 4 5 6 7 Didier Lacour – LPNHE – CERN, April 2016

27 The development of an assembly scenario has started
The final process will depend on the chosen options (LGAD/PIN diode bump-bonding/gluing …) Many steps of assembly and tests need to be improved and carefully developed. New contributions are welcome and needed

28 PCB Metrology Development of an automatic process using a coordinate measuring machine (tri-dim machine) Before cabling : Squaring Parallel edges Size Thickness (flatness in depression) Flatness After cabling : flatness and thickness

29 PCB Metrology results 40 PCB controlled Criteria (measurements before cabling) Planarity tol.0.4 mm Size : to mm Thickness: 1.55 to 1.70 mm Squaring: tol mm Edge parallelism tol.0.05 mm Rejection yield : ~40% (essentially due to a too large size for alveola)

30 Electrical tests bench
A dedicated electrical test system is used to control the wafers before gluing to check the short cuts immediately after gluing to measure the I(V) curves of each wafer and all 4 wafers sourcemeter Keithley LLR Bench

31 Electrical tests results
Measurement after gluing onto the PCB 4 ASU tested, all functional (no short cut). Waiting for further tests (mip detection) I(V) measurement for each wafer before gluing – leakage current volts ASU 23 33 34 42 I total 1.9 11 15 5

32 Calorimeter cell noise
Degradation of the performances because of the pile-up conditions at the HL-LHC Increase of the total noise in individual readout channels Expected total noise energy (electronic + pile-up) of the cells at different eta for an average number of interactions mu=30 and mu = 200 Large cells in the LArInnerWheel (>2.5) Only 2 samplings Significant increase of noise for eta>2.5 Use HGTD for pileup mitigation in offline and trigger Measure arrival time with precision of 50ps

33 Electron energy resolution
Energy resolution for electrons as a function of pseudo-rapidity and for different ranges of the electron transverse momentum for mu=140 and mu = 200 -> degradation of the resolution due to pileup

34 High Granularity Timing Detector
Capability to identify the vertex origin of forward jets Pile-up vertices produced at different z positions: particles from different vertices arrive at different times Crab-kissing: a novel colliding scheme to extend the spatial pile-up density profile and to reduce the spread of the time density of hard scatter interactions Run1 (solid and dashed black lines): very small separation for signal and pile-up due to the large time spread of collisions relative to the z spread of the bunch Crab-kissing: significant sharpening of the time distribution for hard scatter particles, maintaining a large spread for pile-up particles Reference: S. Fartoukh, Pile up management at the high-luminosity LHC and introduction to the crab-kissing concept, Phys. Rev. ST Accel. Beams 17, (2014).

35 All layers Preshower Timing
Occupancy 1.6 larger for r>=285mm with the preshower configuration

36


Télécharger ppt "ILD/Calice and ATLAS-HGTD* Si-W high granularity calorimeter LPNHE"

Présentations similaires


Annonces Google