La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Chapitre 1 Les oscillations 1.  Site Web: A-2010/Bienvenue_.htmlhttp://www.cegep-ste-foy.qc.ca/profs/cshields/NYC/NYC-

Présentations similaires


Présentation au sujet: "Chapitre 1 Les oscillations 1.  Site Web: A-2010/Bienvenue_.htmlhttp://www.cegep-ste-foy.qc.ca/profs/cshields/NYC/NYC-"— Transcription de la présentation:

1 Chapitre 1 Les oscillations 1

2  Site Web: http://www.cegep-ste-foy.qc.ca/profs/cshields/NYC/NYC- A-2010/Bienvenue_.htmlhttp://www.cegep-ste-foy.qc.ca/profs/cshields/NYC/NYC- A-2010/Bienvenue_.html  Manuel obligatoire: Ondes, optique et physique moderne 4 e é dition, Harris Benson. Erpi 2009. 2

3  Analyser différentes situations ou phénomènes physiques reliés aux ondes, à l’optique et à la physique moderne à partir des principes fondamentaux. 3

4  Appliquer les principes de base de la physique à la description des vibrations, des ondes et de leur propagation.  Appliquer les lois de l’optique géométrique.  Appliquer les caractéristiques des ondes aux phénomènes lumineux.  Analyser quelques situations à partir de la physique moderne.  Vérifier expérimentalement quelques lois et principes reliés aux ondes, à l’optique et à la physique moderne. 4

5 1. Les oscillations 2. Le mouvement harmonique simple (M.H.S.) 3. Les paramètres du M.H.S. ( Amplitude, fréquence angulaire, période et constante de phase) 4. La relation entre le mouvement circulaire uniforme et le M.H.S. 5. Les caractéristiques d’un oscillateur harmonique simple. 6. Équation différentielle du M.H.S. Section 1.1 de Benson (pages 1 à 5) 5

6 Quelques définitions 1.Oscillations: fluctuation périodique de la valeur d’une grandeur physique au dessus ou en dessous d’une certaine valeur d’équilibre (valeur centrale). Oscillations mécaniques position: x,  Oscillations non-mécaniques: V, Q, E, B… 2.Oscillation harmonique simple: oscillation sans perte d’énergie 3.Oscillation amortie: perte d’énergie (frottement) 4.Oscillation forcée: Force d’entraînement Si la fréquence de la force d’entraînement est proche de la fréquence naturelle d’oscillation --» phénomène de résonance. 6

7 C’est un exemple de mouvement périodique d’une grande importance car il se veut un modèle (exacte ou rapproché) de beaucoup de problèmes de physique (classique ou quantique). Exemples classiques: 1.Pendule simple: (limite des petits angles); 2.Système masse-ressort: oscillation de faible amplitude; 3.Circuit électrique: (circuit LC) (pour des courants et des tensions faibles) Un M.H.S. a lieu lorsque la force de rappel est directement proportionnelle et de sens opposé au déplacement (à partir de la position d’équilibre). 7

8 Propriétés de l’oscillateur harmonique 1.La fréquence du mouvement est indépendante de l’amplitude d’oscillation; 2.On peut superposer linéairement les effets de plusieurs forces appliquées. 8

9 La fonction position est une fonction harmonique (sin; cos;..) 9

10  Amplitude (A) : déplacement maximal p/r à la position d’équilibre.  Période (T): le temps pour que la particule revienne à la même position avec la même vitesse et la même accélération (M.H.S.) C’est le temps nécessaire pour accomplir une oscillation complète. T 10

11 N.B. Les fonctions sinus et cosinus sont des fonctions harmoniques. x = 0,3 sin(  t/ 0,4) 11

12 La phase (argument du sinus) = (  t +  ) La constante de phase =  ou phase initiale  nous permet de connaître la position  x, lorsque t égal 0. 12

13 La période T (en seconde) est la durée complète d’une oscillation. La fréquence f en hertz (Hz) est égale à l’inverse de la période. 13

14 14

15 15

16 Sachant que le MHS découle d’une composante du mouvement circulaire uniforme, on peut obtenir la vitesse angulaire  en faisant le rapport  /  t. Puisqu’une révolution complète  ( = 2  rad) est effectuée en une durée  t (= T seconde), alors on peut écrire: 16

17 1.L’amplitude est constante; 2.La fréquence (et la période) sont indépendante de l’amplitude (isochronisme); 3.La fonction position x (t) est une fonction harmonique. 17

18 La fonction position: La fonction vitesse: La fonction accélération: 18

19 On remarque que a(t) = -   x(t) d’où: Remarque: la phase de la vitesse diffère de celle de la position de  /2; et la vitesse est maximale lorsque x = 0 (à l’équilibre). 19

20  Faire les exemples 1.1 et 1.2;  Questions 14 et 19 Mesures de la masse à bord de SkylabMesures de la masse à bord de Skylab  Exercices 1, 2 et 57. 20


Télécharger ppt "Chapitre 1 Les oscillations 1.  Site Web: A-2010/Bienvenue_.htmlhttp://www.cegep-ste-foy.qc.ca/profs/cshields/NYC/NYC-"

Présentations similaires


Annonces Google