Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
1
1. La moyenne arithmétique ( )
Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5
2
1. La moyenne arithmétique ( )
Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5
3
1. La moyenne arithmétique ( )
Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5
4
1. La moyenne arithmétique ( )
Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5
5
1. La moyenne arithmétique ( )
Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5
6
1. La moyenne arithmétique ( )
Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5
7
1. La moyenne arithmétique ( )
Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5
8
1. La moyenne arithmétique ( )
Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5
9
1. La moyenne arithmétique ( )
Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5
10
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale
11
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale
12
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale
13
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale
14
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale
15
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale
16
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale
17
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale
18
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale
19
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale
20
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale
21
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale
22
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale
23
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale
24
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale
25
1. La moyenne arithmétique ( )
Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale
26
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
27
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
28
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
29
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
30
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
31
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
32
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
33
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
34
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
35
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
36
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
37
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
38
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
39
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
40
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
41
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
42
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants etc. p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
43
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
44
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
45
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
46
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
47
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
48
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
49
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
50
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
51
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
52
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
53
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !
54
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !
55
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !
56
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !
57
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !
58
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !
59
1. La moyenne arithmétique ( )
Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !
60
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
61
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
62
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
63
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
64
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
65
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences p « xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%
66
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
67
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
68
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
69
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
70
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
71
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
72
1. La moyenne arithmétique ( )
Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences
73
2. Un 2e type de moyenne
74
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/192 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386
75
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386
76
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386
77
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386
78
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386
79
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386
80
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 1,10 = le coefficient multiplicateur de 1991 (CM91) : * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386
81
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 1,10 = le coefficient multiplicateur de 1991 (CM91) : * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386
82
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 1,10 = le coefficient multiplicateur de 1991 (CM91) : * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386
83
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
84
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
85
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
86
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
87
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
88
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
89
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
90
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
91
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/94 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
92
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/94 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
93
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/94 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = * 1,10 * 1, * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
94
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = * 1,11673 = ,5 ≠ PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !
95
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = * 1,11673 = ,5 ≠ PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !
96
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = * 1,11673 = ,5 ≠ PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !
97
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = * 1,11673 = ,5 ≠ PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !
98
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = * 1,11673 = ,5 ≠ PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !
99
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = * 1,11673 = ,5 ≠ PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !
100
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = * 1,11673 = ,5 ≠ PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !
101
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = * 1,11673 = ,5 ≠ PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !
102
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = * 1,11673 = ,5 ≠ PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !
103
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = * 1,11493 = ,8 ≠ par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !
104
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = * 1,11493 = ,8 ≠ par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !
105
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = * 1,11493 = ,8 ≠ par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !
106
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = * 1,11493 = ,8 ≠ par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !
107
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = * 1,11493 = ,8 ≠ par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !
108
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de à en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = * 1,11493 = ,8 ≠ par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !
109
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
110
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
111
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
112
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
113
2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)
114
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !
115
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%
116
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%
117
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%
118
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%
119
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !
120
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !
121
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !
122
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !
123
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%
124
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%
125
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%
126
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !
127
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !
128
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !
129
2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !
130
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
131
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
132
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
133
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
134
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
135
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
136
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
137
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
138
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
139
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
140
2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !
141
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total 22
142
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total 22
143
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total 22
144
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
145
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
146
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
147
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
148
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
149
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
150
3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
151
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
152
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
153
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
154
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
155
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
156
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
157
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
158
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
159
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
160
3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
161
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
162
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
163
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
164
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat ! (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total 22
165
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat ! (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22
166
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
167
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
168
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
169
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
170
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
171
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
172
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
173
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
174
3. Un 3e type de moyenne Formules harmoniques
pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !
175
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
176
Très important dans ce cours !
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Très important dans ce cours ! Famille En extension analytique Arithmétique Géométrique Harmonique
177
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
178
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
179
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
180
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
181
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
182
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
183
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
184
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne : 3 résultats différents Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
185
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
186
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
187
LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? « i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique
188
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
189
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
190
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
191
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
192
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
193
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
194
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
195
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
196
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
197
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
198
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
199
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
200
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
201
LE CHOIX DE LA FORMULE Formule simple ou pondérée ?
1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses SIMPLE Si groupées, distribuées PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p & b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p « xp » « np » 1 20 2 13 3
202
LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)
203
LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)
204
LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)
205
LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)
206
LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)
207
LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)
208
LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)
209
LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)
210
LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)
211
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
212
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
213
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
214
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
215
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
216
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
217
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
218
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
219
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
220
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
221
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
222
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV
223
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)
224
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f) arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f) harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)
225
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f) arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f) harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)
226
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f) arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f) harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)
227
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f) arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f) harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)
228
LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ?
Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f) arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f) harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)
229
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5
230
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5
231
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5
232
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5
233
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5
234
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5
235
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
236
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
237
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
238
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
239
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
240
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
241
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
242
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
243
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
244
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
245
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
246
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
247
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
248
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
249
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
250
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
251
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
252
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
253
LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45)
Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h) arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5
254
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
255
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
256
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
257
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
258
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
259
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
260
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
261
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
262
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
263
Moyenne Conclusions et résumé
2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques simple Exercices à (re)faire : ● « absolument » : 3.4 ; 3.6 ; 3.18 ; 3.20 ● utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)
264
Moyenne Conclusions et résumé Remarques finales
Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats
265
Moyenne Conclusions et résumé Remarques finales
Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats
266
Moyenne Conclusions et résumé Remarques finales
Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats
267
Moyenne Conclusions et résumé Remarques finales
Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats
268
Moyenne Conclusions et résumé Remarques finales
Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats
269
Moyenne Conclusions et résumé Remarques finales
Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats
270
Moyenne Conclusions et résumé Remarques finales
Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats Au boulot !
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.