Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
1
UTILISATION DES AÉROFREINS
Objectifs : savoir modifier sa trajectoire à vitesse constante savoir modifier sa vitesse sur une trajectoire constante Retour au sommaire général Version 1 – juillet 2006
2
Retour au sommaire général
UTILISATION DES AÉROFREINS PRÉ-REQUIS CONNAISSANCES INDISPENSABLES Retour au sommaire général Bibliographie et références
3
PRÉ-REQUIS visualisation de l’aboutissement de la trajectoire ;
relation assiette / trajectoire / vitesse.
4
CONNAISSANCES INDISPENSABLES
LES AÉROFREINS RAPPELS DE MÉCANIQUE DU VOL MODIFICATION DE TRAJECTOIRE À VITESSE CONSTANTE augmentation de la pente de descente diminution de la pente de descente MODIFICATION DE VITESSE À TRAJECTOIRE CONSTANTE réduction de vitesse augmentation de vitesse
5
LES AÉROFREINS
6
Principes aérodynamiques
Les aérofreins sont des surfaces mobiles perpendiculaires au vent relatif. Vent relatif (VR) Vent relatif (VR) CNVV – janvier 2006
7
Principes aérodynamiques
Vent relatif (VR) Sortis, les aérofreins perturbent l’écoulement aérodynamique, et augmentent notablement le coefficient de traînée Cx*. Vent relatif (VR) * jusqu’à 8 fois, pleins AF. CNVV – janvier 2006
8
Effets des aérofreins sur la polaire
CZ fmax50% fmax100% fmax0% CX augmentant avec le braquage des aérofreins, 0% AF 50% AF 100% AF la polaire du planeur est modifiée ; la finesse du planeur est dégradée. CZ CX f = Seuls aérofreins « purs » (parachute de queue) n’agissent que sur Cx. Dégradation Cz surtout sensible au début du braquage quand apparaît modif écoulement Cx remarque : la plupart des aérofreins agissent également sur le coefficient de portance CZ ; sa diminution reste cependant négligeable par rapport à l’augmentation de CX. CNVV – janvier 2006
9
RAPPELS DE MÉCANIQUE DU VOL ÉQUILIBRE DU PLANEUR ÉQUATION DE TRAÎNÉE
OBJECTIF À ATTEINDRE
10
Équilibre du planeur Le planeur est stabilisé sur une trajectoire de pente . RA À l’équilibre, on a : RA = P Px = P x sin Px = Rx trajectoire = constante, car P et sont des constantes. Rx axe longitudinal Px horizon Vent relatif (VR) Retenons que : Rx = P x sin = constante P CNVV – janvier 2006
11
Équation de traînée Rx = ρ.S.V².Cx ; ρ - masse volumique de l’air
constante 1 2 ρ.S.V².Cx ; On exprime la traînée par la relation : Rx = dans laquelle : ρ - masse volumique de l’air sont des constantes. S - surface alaire du planeur On peut donc simplifier et écrire : Rx = K .V².Cx CNVV – janvier 2006
12
Conclusion Rx = K .V².Cx ; Rx = P x sin = constante.
Nous venons de voir que Rx = K .V².Cx ; et qu’à l’équilibre : Rx = P x sin = constante. On a donc : Rx = K .V².Cx = constante. Conclusion : L’équilibre du planeur ne dépend que du couple (V ; Cx). CNVV – janvier 2006
13
le manche et les aérofreins pour :
Objectif à atteindre L’équilibre du planeur ne dépend que du couple (V ; Cx)… or nous savons faire varier V leçon sur la relation assiette / trajectoire / vitesse on a vu que les aérofreins permettent de faire varier Cx. Nous allons apprendre à utiliser conjointement le manche et les aérofreins pour : modifier la trajectoire du planeur à vitesse constante, modifier la vitesse du planeur sur une trajectoire constante. CNVV – janvier 2006
14
VARIATIONS DE TRAJECTOIRE À VITESSE CONSTANTE
POSONS LE PROBLÈME… AUGMENTATION DE LA PENTE DE DESCENTE DIMINUTION DE LA PENTE DE DESCENTE
15
Équation de traînée - pente de trajectoire Rx = ρ.S.V².Cx
horizon trajectoire P RA À l’équilibre, on a : 1 2 ρ.S.V².Cx constante = P x sin Rx = cste = Px Rx AF Px Où : ρ - masse volumique de l’air = constante S - surface alaire du planeur = constante Cx - coefficient de traînée on a vu que le braquage des aérofreins modifie le Cx P - poids du planeur = constante - pente de trajectoire on sait faire varier notre pente de trajectoire CNVV – janvier 2006
16
Modification de trajectoire à vitesse constante
AF = P x sin 1 2 ρ.S.V².Cx constante Équation de traînée à l’équilibre : Rx = cste = Px On veut maintenir la vitesse constante. En modifiant le braquage des aérofreins, on modifie le Cx… … et on rompt l’équilibre. L’équation de traînée nous montre que pour rétablir l’équilibre, on ne peut agir que sur la pente de trajectoire . CNVV – janvier 2006
17
1 Augmentation de la pente de trajectoire ρ.S.V²
Le planeur est stabilisé sur une trajectoire de pente 1. horizon trajectoire Rx1 Px1 1 P 1 2 ρ.S.V² On a : Rx1 = constante .Cx1 = Px1 = P x sin 1 ; il y a équilibre. Rx1 = K x Cx1 Px1 = P x sin 1 CNVV – janvier 2006
18
2 Augmentation de la pente de trajectoire Px1
Si on augmente le braquage des aérofreins, Cx donc Rx augmentent. horizon trajectoire Rx1 Px1 Rx2 1 P On a : Rx2 = constante .Cx2 Px1 = P x sin 1 ; l’équilibre est rompu. Px1 = P x sin 1 Rx2 = K x Cx2 CNVV – janvier 2006
19
3 Augmentation de la pente de trajectoire
Pour rétablir l’équilibre, il faut augmenter la valeur de Px1 , P Rx2 Px2 donc augmenter la pente de trajectoire . Rx2 trajectoire 1 Px1 horizon 2 P Sur cette nouvelle pente de trajectoire, on a : Rx2 = constante .Cx2 = Px2 = P x sin 2 ; l’équilibre est retrouvé. Rx2 = K x Cx2 Px2 = P x sin 2 CNVV – janvier 2006
20
Résumons-nous… 1 2 AUGMENTATION DE LA PENTE DE TRAJECTOIRE
Le planeur est stabilisé sur une trajectoire de pente 1 ; On augmente le braquage des aérofreins, P Px1 Rx1 P Px1 Rx2 Pour rétablir l’équilibre, on augmente , P Rx2 Px2 trajectoire 1 Rx1 = K x Cx1 Px1 = P x sin 1 Cx donc Rx augmentent ; 2 il y a équilibre. Rx2 = K x Cx2 Px1 = P x sin 1 Rx2 = K x Cx2 Px2 = P x sin 2 l’équilibre est rompu. l’équilibre est retrouvé. CNVV – mars 2008
21
1 Diminution de la pente de trajectoire ρ.S.V²
Le planeur est stabilisé sur une trajectoire de pente 1. horizon trajectoire Rx1 Px1 1 1 P 1 2 ρ.S.V² On a : Rx1 = constante .Cx1 = Px1 = P x sin 1 ; il y a équilibre. Rx1 = K x Cx1 Px1 = P x sin 1 CNVV – janvier 2006
22
2 Diminution de la pente de trajectoire Px1
Si on diminue le braquage des aérofreins, Cx donc Rx diminuent. horizon trajectoire Rx1 Rx2 Px1 1 1 P On a : constante Px1 Rx2 = .Cx2 = P x sin 1 ; l’équilibre est rompu. Rx2 = K x Cx2 Px1 = P x sin 1 CNVV – janvier 2006
23
3 Diminution de la pente de trajectoire
Pour rétablir l’équilibre, il faut diminuer la valeur de Px1 , donc diminuer la pente de trajectoire . trajectoire 1 Px1 Rx2 trajectoire Px2 Rx2 horizon 2 P Sur cette nouvelle pente de trajectoire, on a : Rx2 = constante .Cx2 = Px2 = P x sin 2 ; l’équilibre est retrouvé. Rx2 = K x Cx2 Px2 = P x sin 2 CNVV – janvier 2006
24
Résumons-nous… 2 1 Le planeur est stabilisé sur
une trajectoire de pente 1 ; Résumons-nous… DIMINUTION DE LA PENTE DE TRAJECTOIRE P Rx1 Px1 On diminue le braquage des aérofreins, P Rx2 Px1 Pour rétablir l’équilibre, on diminue , P Px2 Rx2 Rx1 = K x Cx1 Px1 = P x sin 1 2 il y a équilibre. Cx donc Rx diminuent ; trajectoire 1 Rx2 = K x Cx2 Px1 = P x sin 1 l’équilibre est rompu. Rx2 = K x Cx2 Px2 = P x sin 2 l’équilibre est retrouvé. CNVV – janvier 2006
25
Ce qu’il faut retenir À chaque Vi du planeur sont associées 2 limites : la pente mini correspondant à 0% d’aérofreins ; la pente maxi correspondant à 100% d’aérofreins. 0% AF Pente mini à Vi = 90 km/h Pente maxi à Vi = 90 km/h Vi = 90 km/h 100% AF CNVV – janvier 2006
26
Ce qu’il faut retenir À chaque Vi du planeur sont associées 2 limites : la pente mini correspondant à 0% d’aérofreins ; la pente maxi correspondant à 100% d’aérofreins. 0% AF Pente mini à Vi = 110 km/h Pente maxi à Vi = 110 km/h Vi = 110 km/h 100% AF CNVV – janvier 2006
27
Ce qu’il faut retenir À chaque Vi du planeur sont associées 2 limites : la pente mini correspondant à 0% d’aérofreins ; la pente maxi correspondant à 100% d’aérofreins. 0% AF Pente mini à Vi = 130 km/h Pente maxi à Vi = 130 km/h Vi = 130 km/h 100% AF CNVV – janvier 2006
28
Ce qu’il faut retenir À chaque Vi du planeur sont associées 2 limites : la pente mini correspondant à 0% d’aérofreins ; la pente maxi correspondant à 100% d’aérofreins. 0% AF Pente mini à Vi = 150 km/h Pente maxi à Vi = 150 km/h Vi = 150 km/h 100% AF CNVV – janvier 2006
29
C’est la notion d’actions conjointes.
AUGMENTATION DE LA PENTE DE TRAJECTOIRE 0% AF A0% 20% AF A20% Pente mini à Vi = 110 km/h 40% AF A40% 60% AF Entre ces 2 limites, pour stabiliser le planeur sur une nouvelle pente de descente, en maintenant la vitesse constante, A60% Pente maxi à Vi = 110 km/h 80% AF on assortit à chaque braquage des aérofreins, une variation d’assiette. A80% 100% AF C’est la notion d’actions conjointes. A100% CNVV – janvier 2006
30
DIMINUTION DE LA PENTE DE TRAJECTOIRE
100% AF A100% 80% AF A80% 60% AF A60% 40% AF A40% 20% AF A20% Pente mini à Vi = 110 km/h 0% AF A0% on assortit à chaque braquage des aérofreins, une variation d’assiette. Pente maxi à Vi = 110 km/h CNVV – janvier 2006
31
VARIATIONS DE VITESSE À TRAJECTOIRE CONSTANTE
POSONS LE PROBLÈME… RÉDUCTION DE VITESSE AUGMENTATION DE VITESSE
32
Modification de vitesse à trajectoire constante
AF constante = P x sin 1 2 ρ.S.V².Cx constante Équation de traînée à l’équilibre : Rx = cste = Px On veut maintenir la pente de trajectoire constante. En modifiant le braquage des aérofreins, on modifie le Cx… … et on rompt l’équilibre. L’équation de traînée nous montre que pour rétablir l’équilibre, on ne peut agir que sur notre vitesse V. CNVV – janvier 2006
33
sur une trajectoire de pente .
Réduction de vitesse 1 Le planeur est stabilisé, avec une incidence a1, sur une trajectoire de pente . trajectoire Rx1 horizon Px a1 P On a : Rx1 = constante .Cx1 = Px = P x sin ; il y a équilibre. La vitesse est constante. Rx1 = K x Cx1 Px = P x sin CNVV – janvier 2006
34
2 Réduction de vitesse Px Si on augmente le braquage des aérofreins,
Cx donc Rx augmentent. trajectoire Rx2 Rx1 horizon Px a1 P On a : Rx2 = constante .Cx2 Px = P x sin ; l’équilibre est rompu au profit de la traînée : la vitesse diminue… Px = P x sin Rx2 = K x Cx2 CNVV – janvier 2006
35
Réduction de vitesse Pendant ce temps, dans le plan vertical…
RA Pendant ce temps, dans le plan vertical… comme la vitesse diminue, trajectoire RA diminue également. Px Rx2 a1 horizon ’ P P RA Il y a rupture de l’équilibre dans le plan vertical : La trajectoire tend à s’incurver vers le bas ; à augmenter. CNVV – janvier 2006
36
3 Réduction de vitesse Pour maintenir constante,
RA trajectoire horizon a2 ’ a1 P Pour maintenir constante, il faut rétablir l’équilibre dans le plan vertical. Pour cela, on augmente l’incidence, en affichant une assiette plus cabrée. CNVV – janvier 2006
37
Réduction de vitesse On a, à nouveau, RA = P.
trajectoire horizon a2 P P RA On a, à nouveau, RA = P. L’équilibre est retrouvé. La vitesse est stabilisée à une valeur inférieure. CNVV – janvier 2006
38
Résumons-nous… RÉDUCTION DE VITESSE À TRAJECTOIRE CONSTANTE P Rx1 Px
On augmentent le braquage des aérofreins, a1 Cx donc Rx augmentent ; Pour maintenir constante, Rx2 on augmente l’incidence, en affichant une assiette plus cabrée, pour rétablir l’équilibre. Rx1 RA P Px a1 Le planeur est stabilisé sur une trajectoire de pente , P RA P a1 avec une incidence a1. il y a équilibre : l’équilibre est rompu au profit de la traînée : Rx1 Px Px a2 Rx1 RA diminue également ; la vitesse est constante. la vitesse diminue, donc… la trajectoire tend à s’incurver vers le bas. La vitesse se stabilise à une valeur inférieure. CNVV – janvier 2006
39
sur une trajectoire de pente .
Augmentation de vitesse 1 Le planeur est stabilisé, avec une incidence a1, sur une trajectoire de pente . trajectoire Rx1 horizon a1 Px P On a : Rx1 = constante .Cx1 = Px = P x sin ; il y a équilibre. La vitesse est constante. Rx1 = K x Cx1 Px = P x sin CNVV – janvier 2006
40
2 Augmentation de vitesse Px
Si on diminue le braquage des aérofreins, Cx donc Rx diminuent. trajectoire Rx1 Rx2 horizon a1 Px P On a : Rx2 = constante .Cx2 Px = P x sin ; l’équilibre est rompu au profit du poids : la vitesse augmente… Rx2 = K x Cx2 Px = P x sin CNVV – janvier 2006
41
Augmentation de vitesse
RA Pendant ce temps, dans le plan vertical… comme la vitesse augmente, trajectoire RA augmente également. Px Rx2 horizon a1 ’ P P RA Il y a rupture de l’équilibre dans le plan vertical : La trajectoire tend à s’incurver vers le haut ; à diminuer. CNVV – janvier 2006
42
3 Augmentation de vitesse Pour maintenir constante,
RA Augmentation de vitesse 3 trajectoire horizon a1 ’ a2 P Pour maintenir constante, il faut rétablir l’équilibre dans le plan vertical. Pour cela, on diminue l’incidence, en affichant une assiette plus piquée. CNVV – janvier 2006
43
Augmentation de vitesse
RA trajectoire horizon a2 P P RA On a, à nouveau, RA = P. L’équilibre est retrouvé. La vitesse est stabilisée à une valeur supérieure. CNVV – janvier 2006
44
Résumons-nous… AUGMENTATION DE VITESSE À TRAJECTOIRE CONSTANTE P Rx1
Px On diminue le braquage des aérofreins, a1 Cx donc Rx diminuent ; Pour maintenir constante, Rx1 Rx2 RA on diminue l’incidence, en affichant une assiette plus piquée, pour rétablir l’équilibre. a1 Px Le planeur est stabilisé sur une trajectoire de pente , RA avec une incidence a1. a1 il y a équilibre : P l’équilibre est rompu au profit du poids : Rx1 Px Rx1 P Px a2 RA augmente également ; la vitesse est constante. la vitesse augmente, donc… la trajectoire tend à s’incurver vers le haut. P La vitesse se stabilise à une valeur supérieure. CNVV – janvier 2006
45
Ce qu’il faut retenir À une pente de trajectoire donnée sont associées 2 limites : une vitesse minimum correspondant à 100% d’aérofreins ; une vitesse maximum correspondant à 0% d’aérofreins. * 100% AF vitesse max. a100% 0% AF a0% vitesse min. * dans les limites du domaine de vol du planeur (Vs, VNE). CNVV – janvier 2006
46
AUGMENTATION DE VITESSE À TRAJECTOIRE CONSTANTE
vitesse min. AUGMENTATION DE VITESSE À TRAJECTOIRE CONSTANTE 100% AF a100% pour accélérer, décélérer ou stabiliser le planeur à une nouvelle vitesse, en conservant une pente de trajectoire constante, Entre ces 2 limites, 80% AF a80% on assortit à chaque braquage des aérofreins, une variation d’assiette. 60% AF a60% 40% AF a40% vitesse max. 20% AF a20% 0% AF a0% C’est encore la notion d’actions conjointes. CNVV – janvier 2006
47
À TRAJECTOIRE CONSTANTE
vitesse max. DIMINUTION DE VITESSE À TRAJECTOIRE CONSTANTE 0% AF a0% 20% AF a20% 40% AF a40% 60% AF a60% vitesse min. 80% AF a80% 100% AF a100% CNVV – janvier 2006
48
BIBLIOGRAPHIE et RÉFÉRENCES
Manuel du pilote vol à voile Les aérofreins – Phase 3 / p°61 Pente d’approche sans vent – Phase 3 / p°63 Guide de l’instructeur vol à voile Utilisation des AF p°65 à 68 Mécanique du vol des planeurs Utilisation des aérofreins – chapitre IX / p°55 à 58
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.