La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Chapitre 3 Le théorème de Gauss.

Présentations similaires


Présentation au sujet: "Chapitre 3 Le théorème de Gauss."— Transcription de la présentation:

1 Chapitre 3 Le théorème de Gauss

2 flux du champ de vitesse
La notion de flux dans le cas de l’écoulement d’un liquide quantité d’eau traversant la section S1 pendant le temps t ? débit = d’où débit (volumique) appelé encore flux du champ de vitesse dans le cas où le champ de vitesse est uniforme !

3 n dS S Analogie liquide – électrostatique:
Dans le cas où le champ de vitesse est non uniforme , on peut toujours se ramener à une surface infinitésimale dS où est constant. On définit alors le flux infinitésimal d à travers dS (orientée) par: dS S C n et le flux du champ de vitesse à travers toute la surface S orientée est alors: On choisit arbitrairement un sens de parcours pour le contour C de S et on définit l’orientation de la normale à partir de la règle de la main droite Analogie liquide – électrostatique: Champ de vitesse  champ électrostatique lignes du champ de vitesse  lignes du champ électrostatique

4 Flux du champ électrostatique
 Flux élémentaire du champ à travers une surface élémentaire: surface élémentaire dS  Flux du champ à travers une surface finie surface S N.B. : est normal à la surface élémentaire dS

5 Tube de flux du champ électrostatique
Les 2 sections du tube de flux lignes de champ Un tube de flux est une sorte de tube à section variable dont la surface latérale est constituée par des lignes de champ et qui ne renferme pas de charge électrique en son intérieur. Le flux le long d’un tube de flux se conserve (voir ci-après).

6 Théorème de Gauss flux de à travers la surface fermée de Gauss SG champ en un point quelconque M de SG charge électrique à l’intérieur de SG vecteur surface élémentaire au point M SG: surface fermée de Gauss Cette relation permet de calculer aisément le champ lorsque la distribution des charges présente une symétrie élevée. Avant de voir comment appliquer cette relation, nous allons montrer/vérifier qu’elle est valable dans le cas d’une (seule) charge ponctuelle.

7 q Cas d’une charge ponctuelle q M Cas 1: la SG contient la charge q SG
SG : on choisit la sphère de centre O entourant q M O q N.B. : Dans le cas d’une surface fermée la normale est toujours orientée vers l’extérieur du volume délimité par la surface.

8 q d’où Cas 2: la SG ne contient pas la charge q dS2 dS1 E1 E2 O SG
flux entrant < 0 flux sortant > 0 or décroit en 1/r2 alors que augmente en r2. d’où


Télécharger ppt "Chapitre 3 Le théorème de Gauss."

Présentations similaires


Annonces Google