La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Chapitre 1 Généralités sur les données

Présentations similaires


Présentation au sujet: "Chapitre 1 Généralités sur les données"— Transcription de la présentation:

1 Chapitre 1 Généralités sur les données
PowerPoint revu et modifié récemment. Merci pour votre vigilance !

2 Chapitre 1 Généralités sur les données
Le chapitre 5 est terminé. Dans le chapitre 1, on ne parle plus : d’échantillon ; de la marge ; de la fourchette !

3 Chapitre 1. Généralités sur les données
Si analyse de données quantitatives (toujours le cas dans cette AA) 1er objectif : « prendre possession des données » souvent : noyés par le nombre des données : comparaison des revenus dans les 3 Régions belges l’âge des chômeurs dans les 3 Régions belges la réussite des étudiant(e)s de 1re année dans le supérieur  méthodes pour commencer : à s’y retrouver à faire parler les données

4 Chapitre 1. Généralités sur les données
Si analyse de données quantitatives (toujours le cas dans cette AA) 1er objectif : « prendre possession des données » souvent : noyés par le nombre des données : comparaison des revenus dans les 3 Régions belges l’âge des chômeurs dans les 3 Régions belges la réussite des étudiant(e)s de 1re année dans le supérieur  méthodes pour commencer : à s’y retrouver à faire parler les données

5 Chapitre 1. Généralités sur les données
Si analyse de données quantitatives (toujours le cas dans cette AA) 1er objectif : « prendre possession des données » souvent : noyés par le nombre des données : comparaison des revenus dans les 3 Régions belges l’âge des chômeurs dans les 3 Régions belges la réussite des étudiant(e)s de 1re année dans le supérieur  méthodes pour commencer : à s’y retrouver à faire parler les données

6 Chapitre 1. Généralités sur les données
Si analyse de données quantitatives (toujours le cas dans cette AA) 1er objectif : « prendre possession des données » souvent : noyés par le nombre des données : comparaison des revenus dans les 3 Régions belges l’âge des chômeurs dans les 3 Régions belges la réussite des étudiant(e)s de 1re année dans le supérieur  méthodes pour commencer : à s’y retrouver à faire parler les données

7 Chapitre 1. Généralités sur les données
Si analyse de données quantitatives (toujours le cas dans cette AA) 1er objectif : « prendre possession des données » souvent : noyés par le nombre des données : comparaison des revenus dans les 3 Régions belges l’âge des chômeurs dans les 3 Régions belges la réussite des étudiant(e)s de 1re année dans le supérieur  méthodes pour commencer : à s’y retrouver à faire « parler les données »

8 Chapitre 1. Généralités sur les données
Si analyse de données quantitatives (toujours le cas dans cette AA) 1er objectif : « prendre possession des données » souvent : noyés par le nombre des données : comparaison des revenus dans les 3 Régions belges l’âge des chômeurs dans les 3 Régions belges la réussite des étudiant(e)s de 1re année dans le supérieur  méthodes pour commencer : à s’y retrouver à faire « parler les données » aujourd’hui : blabla (ou bla-bla) introductif déjà un exercice, j’espère

9 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Thème traité (avec d’autres en plus) : état nutritionnel de la population d’un pays de 11 habitants tableau 1.1, la variable RJC (Ration Journalière en (grandes) Calories) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

10 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Thème traité (avec d’autres en plus) : état nutritionnel de la population d’un pays de 11 habitants tableau 1.1, la variable RJC (Ration Journalière en (grandes) Calories) problème simple : pourquoi simple ? population seulement 11 individus avantage : on n’est pas noyé par la masse des données inconvénient (mais généralisation aisée) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

11 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Thème traité (avec d’autres en plus) : état nutritionnel de la population d’un pays de 11 habitants tableau 1.1, la variable RJC (Ration Journalière en (grandes) Calories) problème simple : pourquoi simple ? population seulement 11 individus avantage : on n’est pas noyé par la masse des données inconvénient (mais généralisation aisée) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

12 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Thème traité (avec d’autres en plus) : état nutritionnel de la population d’un pays de 11 habitants tableau 1.1, la variable RJC (Ration Journalière en (grandes) Calories) problème simple : pourquoi simple ? population seulement 11 individus avantage : on n’est pas noyé par la masse des données inconvénient (mais généralisation aisée) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

13 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Thème traité (avec d’autres en plus) : état nutritionnel de la population d’un pays de 11 habitants tableau 1.1, la variable RJC (Ration Journalière en (grandes) Calories) problème simple : pourquoi simple ? population seulement 11 individus avantage : on n’est pas noyé par la masse des données inconvénient : méthodes pas indispensables (mais généralisation aisée) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

14 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Thème traité (avec d’autres en plus) Tableau de données initiales (début du tableau 1.1, p. 2) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Pas seulement RJC, mais aussi d’autres caractéristiques des individus En rapport ou pas avec l’état nutritionnel !

15 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » État nutritionnel dans un pays Avant toute chose, 2 éléments à identifier (pourquoi ?) pourquoi ? éviter des erreurs grossières en confondant ces 2 éléments ex. : l’âge moyen des jeunes de 0 à 15 ans = 2 questions correspondant aux 2 éléments sur qui porte l’étude ? sur quoi porte l’étude ?

16 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » État nutritionnel dans un pays Avant tout, 2 éléments à identifier pourquoi ? éviter des erreurs grossières en confondant ces 2 éléments ex. : l’âge moyen des jeunes de 0 à 15 ans = 2 questions correspondant aux 2 éléments sur qui porte l’étude ? sur quoi porte l’étude ?

17 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » État nutritionnel dans un pays Avant tout, 2 éléments à identifier pourquoi ? éviter des erreurs grossières en confondant ces 2 éléments ex. à l’examen : l’âge moyen des jeunes de 0 à 15 ans = 2 questions correspondant aux 2 éléments sur qui porte l’étude ? sur quoi porte l’étude ?

18 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » État nutritionnel dans un pays Avant tout, 2 éléments à identifier pourquoi ? éviter des erreurs grossières en confondant ces 2 éléments ex. à l’examen : l’âge moyen des jeunes de 0 à 15 ans = 2 questions correspondant aux 2 éléments sur qui porte l’étude ? sur quoi porte l’étude ?

19 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » État nutritionnel dans un pays Avant tout, 2 éléments à identifier pourquoi ? éviter des erreurs grossières en confondant ces 2 éléments ex. à l’examen : l’âge moyen des jeunes de 0 à 15 ans = 2 questions correspondant aux 2 éléments sur qui porte l’étude ? sur quoi porte l’étude ?

20 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? les personnes/choses au SUJET desquelles l’étude s’intéresse de qui/de quoi connait-on une caractéristique ? à qui a-t-on posé des questions ? qui a répondu aux questions ? Souplesse & imagination : taille des enfants à la naissance = les « INDIVIDUS » ou « unités » SOUS OBSERVATION dans l’exemple : les 11 habitants du pays

21 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? les personnes/choses au SUJET desquelles l’étude s’intéresse dans l’exemple : les 11 habitants du pays désignation/notation mathématique : les individus 1, 2, 3… i … 10, 11 (parfois a, b, c…) « i » désigne un individu parmi les 11 « n » = le nombre total d’individus, soit 11 i peut donc varier de 1 à 11 population sous observation =  population de référence  ensemble des unités sous obs.  ensemble des « i » sous obs.

22 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? les personnes/choses au SUJET desquelles l’étude s’intéresse dans l’exemple : les 11 habitants du pays désignation/notation mathématique : souvent , parfois  les individus 1, 2, 3… i … 10, 11 (parfois a, b, c…) « i » désigne un individu parmi les 11 « n » = le nombre total d’individus, soit 11 i peut donc varier de 1 à 11 population sous observation =  population de référence  ensemble des unités sous obs.  ensemble des « i » sous obs.

23 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? les personnes/choses au SUJET desquelles l’étude s’intéresse dans l’exemple : les 11 habitants du pays désignation/notation mathématique : les individus 1, 2, 3… i … 10, 11 (parfois a, b, c…) « i » désigne un individu parmi les 11 « n » = le nombre total d’individus, soit 11 i peut donc varier de 1 à 11 population sous observation =  population de référence  ensemble des unités sous obs.  ensemble des « i » sous obs.

24 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? les personnes/choses au SUJET desquelles l’étude s’intéresse dans l’exemple : les 11 habitants du pays désignation/notation mathématique : les individus 1, 2, 3… i … 10, 11 (parfois a, b, c…) « i » désigne un individu parmi les 11 « n » = le nombre total d’individus, soit 11 i peut donc varier de 1 à 11 population sous observation =  population de référence  ensemble des unités sous obs.  ensemble des « i » sous obs.

25 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? les personnes/choses au SUJET desquelles l’étude s’intéresse dans l’exemple : les 11 habitants du pays désignation/notation mathématique : les individus 1, 2, 3… i … 10, 11 (parfois a, b, c…) « i » désigne un individu parmi les 11 « n » = le nombre total d’individus observés, soit 11 i peut donc varier de 1 à 11 population sous observation =  population de référence  ensemble des unités sous obs.  ensemble des « i » sous obs. Attention à « n » : ° dans chapitre 5 = taille de l’échantillon ° dans chapitre 1 = l’ensemble des « i » auxquels on s’intéresse. Parfois la même chose, parfois pas ! Essayons de ne pas dire ici : « n » = « taille de l’échantillon » !

26 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? les personnes/choses au SUJET desquelles l’étude s’intéresse dans l’exemple : les 11 habitants du pays désignation/notation mathématique : les individus 1, 2, 3… i … 10, 11 (parfois a, b, c…) « i » désigne un individu parmi les 11 « n » = le nombre total d’individus observés, soit 11 i peut donc varier de 1 à 11 population sous observation =  population de référence  ensemble des unités sous obs.  ensemble des « i » sous obs.

27 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? les personnes/choses au SUJET desquelles l’étude s’intéresse dans l’exemple : les 11 habitants du pays désignation/notation mathématique : les individus 1, 2, 3… i … 10, 11 (parfois a, b, c…) « i » désigne un individu parmi les 11 « n » = le nombre total d’individus observés, soit 11 « i » peut donc varier de 1 à 11 population sous observation =  population de référence  ensemble des unités sous obs.  ensemble des « i » sous obs.

28 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? les personnes/choses au SUJET desquelles l’étude s’intéresse dans l’exemple : les 11 habitants du pays désignation/notation mathématique : les individus 1, 2, 3… i … 10, 11 (parfois a, b, c…) « i » désigne un individu parmi les 11 « n » = le nombre total d’individus observés, soit 11 « i » peut donc varier de 1 à 11 population sous observation =  population de référence  ensemble des unités sous obs.  ensemble des « i » sous obs.

29 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? (Fini) Sur quoi porte l’étude ? dans l’exemple, sur l’ÉTAT NUTRITIONNEL = le phénomène étudié choix d’une VARIABLE pour analyser le phénomène étudié « variable » = CARACTÈRE mesurable pour les « i » bon révélateur du phénomène étudié mesurable (classiquement ou répartition en catégories) quelle question posée aux « i » à propos de l’état nutritionnel ? RJC dans notre exemple RJC = la variable pour analyser l’état nutritionnel (on peut mieux faire)

30 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? (Fini) Sur quoi porte l’étude ? dans l’exemple, sur l’ÉTAT NUTRITIONNEL choix d’une VARIABLE pour analyser le f désignation/notation (si une seule variable) « X » = la variable (MAJUSCULE) « xi » = la valeur de X pour i (minuscule) exemple : pour l’individu 5, RJC vaut C/J ○ pour 11, 1.100 X5 = C/J ○ X11 = C/J

31 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? (Fini) Sur quoi porte l’étude ? dans l’exemple, sur l’ÉTAT NUTRITIONNEL choix d’une VARIABLE pour analyser le f désignation/notation (si une seule variable) « X » = la variable (MAJUSCULE) « xi » = la valeur de X pour i (minuscule) exemple : pour l’individu 5, RJC vaut C/J ○ pour 11, 1.100 X5 = C/J ○ X11 = C/J

32 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? (Fini) Sur quoi porte l’étude ? dans l’exemple, sur l’ÉTAT NUTRITIONNEL choix d’une VARIABLE pour analyser le f désignation/notation (si une seule variable) « X » = la variable (MAJUSCULE) « xi » = la valeur de X pour i (minuscule) exemples (tableau 1.1) : pour l’individu 5, RJC vaut C/J ○ pour 11, 1.100 X5 = C/J ○ X11 = C/J

33 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? (Fini) Sur quoi porte l’étude ? dans l’exemple, sur l’ÉTAT NUTRITIONNEL choix d’une VARIABLE pour analyser le f désignation/notation (si une seule variable) « X » = la variable (MAJUSCULE) « xi » = la valeur de X pour i (minuscule) exemples (tableau 1.1) : pour l’individu 5, RJC vaut C/J ○ pour 11, 1.100 X5 = C/J ○ X11 = C/J

34 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? (Fini) Sur quoi porte l’étude ? dans l’exemple, sur l’ÉTAT NUTRITIONNEL choix d’une VARIABLE pour analyser le f désignation/notation (si une seule variable) « X » = la variable (MAJUSCULE) « xi » = la valeur de X pour i (minuscule) exemples (tableau 1.1) : pour l’individu 5, RJC vaut C/J ○ pour 11, 1.100 X5 = C/J ○ X11 = C/J

35 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? (Fini) Sur quoi porte l’étude ? dans l’exemple, sur l’ÉTAT NUTRITIONNEL choix d’une VARIABLE pour analyser le f désignation/notation (si une seule variable) « X » = la variable (MAJUSCULE) « xi » = la valeur de X pour i (minuscule) exemples (tableau 1.1) : pour l’individu 3, RJC vaut C/J ○ pour 11, 1.100 x3 = C/J ○ X11 = C/J Individu i RJC X 1 2.000 2 2.500 3 1.800

36 Chapitre 1. Généralités sur les données
Sur qui porte l’étude ? (Fini) Sur quoi porte l’étude ? dans l’exemple, sur l’ÉTAT NUTRITIONNEL choix d’une VARIABLE pour analyser le f désignation/notation (si une seule variable) « X » = la variable (MAJUSCULE) « xi » = la valeur de X pour i (minuscule) exemples (tableau 1.1) : pour l’individu 3, RJC vaut C/J x3 = C/J : « x indice 3 » ou «  x3  » = C/J Individu i RJC X 1 2.000 2 2.500 3 1.800

37 Chapitre 1. Généralités sur les données
Thème = l’état nutritionnel de la population d’un pays 2e ex. = la taille des étudiant(e)s de l’ISFSC un individu sous observation = un(e) étudiant(e) inscrit(e) à l’ISFSC un « i » sous observation la pop. sous observation = l’ensemble des étudiant(e)s de l’ISFSC si 903 inscrit(e)s, n = 903 la variable = X = la taille la valeur de la variable pour l’étudiant(e) 231 : x231 = 1,65 mètre

38 Chapitre 1. Généralités sur les données
Thème = l’état nutritionnel de la population d’un pays 2e ex. = la taille des étudiant(e)s de l’ISFSC 3e ex. = la couleur des voitures vendues en Belgique en 2012 une unité sous observation = une voiture vendue en Belgique en 2012 à un « i », on ne peut poser de question  imagination ! la pop. sous observation = l’ensemble des voitures vendues en Belgique en 2012 la variable = X = la couleur la valeur de X pour la 1.106e voiture : x1.106 = rouge

39 Chapitre 1. Généralités sur les données
Sur qui porte l’étude (bref retour) ? Attention : en prenant l’exemple de la couleur des voitures un « individu » : pas nécessairement un être humain une « pop. statistique » : pas nécessairement une pop. humaine  Souplesse et imagination!

40 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Que vaut : x2 ? C/J a3 ? 20 ans s1 ? 1 = sexe masculin y1 ? 0,8, soit 0,8* = CFA Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

41 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

42 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

43 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

44 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

45 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Que vaut : x2 ? C/J a3 ? 20 ans s1 ? 1 = sexe masculin y1 ? 0,8, soit 0,8* = CFA Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

46 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Que vaut : x2 ? C/J a3 ? 20 ans s1 ? 1 = sexe masculin y1 ? 0,8, soit 0,8* = CFA Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

47 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Que vaut : x2 ? C/J a3 ? 20 ans s1 ? 1 = sexe masculin y1 ? 0,8, soit 0,8* = CFA Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

48 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Que vaut : x2 ? C/J a3 ? 20 ans s1 ? 1 = sexe masculin y1 ? 0,8, soit 0,8* = CFA Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

49 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Que vaut : x2 ? C/J a3 ? 20 ans s1 ? 1 = sexe masculin y1 ? 0,8, soit 0,8* = CFA Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

50 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Que vaut : x2 ? C/J a3 ? 20 ans s1 ? 1 = sexe masculin y1 ? 0,8, soit 0,8* = CFA Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

51 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 (p. 2, extrait : seulement les 3 premiers individus) Que vaut : x2 ? C/J a3 ? 20 ans s1 ? 1 = sexe masculin y1 ? 0, (soit 0,8* CFA = CFA) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Cette façon d’exprimer les données est considérée comme acquise !

52 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4)

53 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ?

54 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Exemple : sens mathématique ou pas de calculer une moyenne ?

55 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous catégories discrètes : peu de valeurs ≠ possibles (descendance et VM) (implicitement) continue : bcp de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Exemple : ° âge et état civil ° moyenne : * pour âge ? * pour état civil ?

56 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous catégories discrètes : peu de valeurs ≠ possibles (descendance et VM) (implicitement) continue : bcp de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

57 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique : interchangeables exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous catégories discrètes : peu de valeurs ≠ possibles (descendance et VM) (implicitement) continue : bcp de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Autre système de codes pour le sexe : ° « 1 » pour « femme » et « 2 » pour « homme » ° si indiqué quelque part, les données restent lisibles !

58 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique : interchangeables exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous catégories discrètes : peu de valeurs ≠ possibles (descendance et VM) (implicitement) continue : bcp de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 État civil : sens mathématique ou pas de calculer une moyenne ?

59 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique : interchangeables exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous catégories discrètes : peu de valeurs ≠ possibles (descendance et VM) (implicitement) continue : bcp de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

60 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique : interchangeables exemples : sexe et état civil Variables quantitatives : ex. âge nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous catégories discrètes : peu de valeurs ≠ possibles (descendance et VM) (implicitement) continue : bcp de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Âge : sens mathématique ou pas de calculer une moyenne ?

61 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique : interchangeables exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous-catégories : discrètes : peu de valeurs ≠ possibles (descendance et VM) (implicitement) continue : bcp de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

62 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique : interchangeables exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous-catégories : discrètes : peu de valeurs ≠ possibles (descendance et VM) (implicitement) continue : bcp de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

63 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique : interchangeables exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous-catégories : discrètes : peu de valeurs ≠ possibles (descendance et VM) continues : beaucoup de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Pas de limite précise entre « peu » et « beaucoup » ! Attention quand on arrondit (poids) ou tronque (âge)

64 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique : interchangeables exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous catégories : discrètes : peu de valeurs ≠ possibles (descendance et VM) continues : beaucoup de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 On devrait écrire « (implicitement) continues », mais on écrira simplement « continues »

65 Chapitre 1. Généralités sur les données
Les types de variables sur le plan mathématique (pp. 2-4) Pourquoi les distinguer ? Pour éviter des calculs vides de sens ! Variables qualitatives : nombres = codes arbitraires, sans valeur numérique : interchangeables exemples : sexe et état civil Variables quantitatives : nombres = valeurs numériques (42 ans = 3 ans de moins que 45) deux sous-catégories : discrètes : peu de valeurs ≠ possibles (descendance et VM) continues : beaucoup de valeurs ≠ possibles (les autres) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

66 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 2 questions pour identifier le type de la variable Variable du type sexe ou état civil ? Oui  variable QUALITATIVE (exemples dans le tableau) Non  variable QUANTITATIVE (exemples dans le tableau) Variable du genre descendance ou visite(s) médicale(s) ? Oui  variable DISCRÈTE (exemples dans le tableau) Non  variable (implicitement) CONTINUE (exemples dans le tableau) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Présentation simplifiée par rapport au syllabus !

67 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 2 questions pour identifier le type de la variable Variable du type sexe ou état civil ? Oui  variable QUALITATIVE (exemples dans le tableau) Non  variable QUANTITATIVE (exemples dans le tableau) Variable du genre descendance ou visite(s) médicale(s) ? Oui  variable DISCRÈTE (exemples dans le tableau) Non  variable (implicitement) CONTINUE (exemples dans le tableau) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Présentation simplifiée par rapport au syllabus !

68 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 2 questions pour identifier le type de la variable Variable du type sexe ou état civil ? Oui  variable QUALITATIVE (exemples dans le tableau) Non  variable QUANTITATIVE (exemples dans le tableau) Variable du genre descendance ou visite(s) médicale(s) ? Oui  variable DISCRÈTE (exemples dans le tableau) Non  variable (implicitement) CONTINUE (exemples dans le tableau) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Présentation simplifiée par rapport au syllabus !

69 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 2 questions pour identifier le type de la variable Variable du type sexe ou état civil ? Oui  variable QUALITATIVE (exemples dans le tableau) Non  variable QUANTITATIVE (exemples dans le tableau) Variable du genre descendance ou visite(s) médicale(s) ? Oui  variable DISCRÈTE (exemples dans le tableau) Non  variable (implicitement) CONTINUE (exemples dans le tableau) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Si « oui », pas nécessaire d’aller plus loin ! Si « non », question suivante. Présentation simplifiée par rapport au syllabus !

70 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 2 questions pour identifier le type de la variable Variable du type sexe ou état civil ? Oui  variable QUALITATIVE (exemples dans le tableau) Non  variable QUANTITATIVE (exemples dans le tableau) Si non, variable du type descendance ou visite(s) médicale(s) ? Oui  variable DISCRÈTE (exemples dans le tableau) Non  variable CONTINUE (exemples dans le tableau) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Présentation simplifiée par rapport au syllabus !

71 Chapitre 1. Généralités sur les données
Les types de variables (pp. 2-4) Tableau 1.1 2 questions pour identifier le type de la variable Variable du type sexe ou état civil ? Oui  variable QUALITATIVE (exemples dans le tableau) Non  variable QUANTITATIVE (exemples dans le tableau) Si non, variable du type descendance ou visite(s) médicale(s) ? Oui  variable DISCRÈTE (exemples dans le tableau) Non  variable CONTINUE (exemples dans le tableau) Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4 Présentation simplifiée par rapport au syllabus !

72 Chapitre 1. Généralités sur les données
Les types de variables : résumé 3 types de variable : QUALITATIVE (nationalité, couleur des voitures…) QUANTITATIVE DISCRÈTE (descendance…) QUANTITATIVE (implicitement) CONTINUE (âge, revenus…) Nomenclatures plus diversifiées avec notamment les var. ordinales Pas pour nous

73 Chapitre 1. Généralités sur les données
Les types de variables : résumé 3 types de variable : QUALITATIVE (sexe, nationalité, couleur des voitures…) QUANTITATIVE DISCRÈTE (descendance…) QUANTITATIVE CONTINUE (âge, revenus…) Nomenclatures plus diversifiées avec notamment les var. ordinales Pas pour nous

74 Chapitre 1. Généralités sur les données
Les types de variables : résumé 3 types de variable : QUALITATIVE (sexe, nationalité, couleur des voitures…) QUANTITATIVE DISCRÈTE (descendance…) QUANTITATIVE CONTINUE (âge, revenus…) Nomenclatures plus diversifiées, avec, par ex., les var. ordinales Pas pour nous !

75 Chapitre 1. Généralités sur les données
Observations ou données brutes (p. 4) Tableau 1.1 Valeurs telles que collectées sur le terrain = réponses telles qu’entendues quand la question a été posée Exemples : données brutes ou pas ? variable « âge » ? Oui, c’est comme si on entendait la réponse variable « RJC » ? Non, sauf si… Idéal : les données brutes : rien n’échappe ! Abus de langage : données brutes = les données trouvées Et maintenant, les traitements sur les données ! Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

76 Chapitre 1. Généralités sur les données
Observations ou données brutes (p. 4) Tableau 1.1 Valeurs telles que collectées sur le terrain = réponses telles qu’entendues quand la question a été posée Exemples : données brutes ou pas ? variable « âge » ? Oui, c’est comme si on entendait la réponse variable « RJC » ? Non, sauf si… Idéal : les données brutes : rien n’échappe ! Abus de langage : données brutes = les données trouvées Et maintenant, les traitements sur les données ! Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

77 Chapitre 1. Généralités sur les données
Observations ou données brutes (p. 4) Tableau 1.1 Valeurs telles que collectées sur le terrain = réponses telles qu’entendues quand la question a été posée Exemples : données brutes ou pas ? variable « âge » ? Oui, c’est comme si on entendait la réponse variable « RJC » ? Non, sauf si… Idéal : les données brutes : rien n’échappe ! Abus de langage : données brutes = les données trouvées Et maintenant, les traitements sur les données ! Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

78 Chapitre 1. Généralités sur les données
Observations ou données brutes (p. 4) Tableau 1.1 Valeurs telles que collectées sur le terrain = réponses telles qu’entendues quand la question a été posée Exemples : données brutes ou pas ? variable « âge » ? Oui, c’est comme si on entendait la réponse variable « RJC » ? Non, sauf si… Idéal : les données brutes : rien n’échappe ! Abus de langage : données brutes = les données trouvées Et maintenant, les traitements sur les données ! Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

79 Chapitre 1. Généralités sur les données
Observations ou données brutes (p. 4) Tableau 1.1 Valeurs telles que collectées sur le terrain = réponses telles qu’entendues quand la question a été posée Et maintenant, les traitements sur les données ! Individu i RJC X Age A Descendance E Sexe S Poids P Revenus Y État civil EC Visites méd. VM 1 2.000 45 2 65 0,8 3 2.500 42 51 0,5 1.800 20 72 0,2 4

80 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Exemple simple : tableau 1.1 et les 11 RJC Mettre de l’ordre et réduire le nombre de lignes : 3 étapes

81 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Exemple simple : tableau 1.1 et les 11 RJC Mettre de l’ordre et réduire le nombre de lignes : 3 étapes Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100

82 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Exemple simple : tableau 1.1 et les 11 RJC Mettre de l’ordre et réduire le nombre de lignes : 3 étapes Étape 1 : mettre de l’ordre Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100 Suite ordonnée xi RJC 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 5 x10 6 x1 2.000 7 x2 2.500 8 x7 2.800 9 x8 2.950 10 x6 3.100 11 x5 3.500

83 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Exemple simple : tableau 1.1 et les 11 RJC Mettre de l’ordre et réduire le nombre de lignes : 3 étapes Étape 2 : distribution selon les valeurs Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100 Suite ordonnée xi RJC 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 5 x10 6 x1 2.000 7 x2 2.500 8 x7 2.800 9 x8 2.950 10 x6 3.100 11 x5 3.500 Distribution selon les valeurs p xp np 1 1.100 2 1.600 3 1.800 4 2.000 5 2.500 6 2.800 7 2.950 8 3.100 9 3.500 Tot. 11

84 Chapitre 1. Généralités sur les données
Objectif : « prendre possession des données » Exemple simple : tableau 1.1 et les 11 RJC Mettre de l’ordre et réduire le nombre de lignes : 3 étapes Étape 3 : distribution en classes Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100 Suite ordonnée xi RJC 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 5 x10 6 x1 2.000 7 x2 2.500 8 x7 2.800 9 x8 2.950 10 x6 3.100 11 x5 3.500 Distribution selon les valeurs p xp np 1 1.100 2 1.600 3 1.800 4 2.000 5 2.500 6 2.800 7 2.950 8 3.100 9 3.500 Tot. 11 Distribution en classes p/k Classes np 1 1.000 −< 2.000 5 2 2.000 −< 3.000 4 3 3.000 −< 4.000 Tot. SO 11

85 Chapitre 1. Généralités sur les données
Mettre de l’ordre et réduire le nombre de lignes : 3 étapes Ordre croissant Nombre de lignes réduit Étape 3 : distribution en classes Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100 Suite ordonnée xi RJC 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 5 x10 6 x1 2.000 7 x2 2.500 8 x7 2.800 9 x8 2.950 10 x6 3.100 11 x5 3.500 Distribution selon les valeurs p xp np 1 1.100 2 1.600 3 1.800 4 2.000 5 2.500 6 2.800 7 2.950 8 3.100 9 3.500 Tot. 11 Distribution en classes p/k Classes np 1 1.000 −< 2.000 5 2 2.000 −< 3.000 4 3 3.000 −< 4.000 Tot. SO 11

86 1re étape : mettre de l’ordre

87 Suite ordonnée (croissante) (p. 5)
Objectif classer les données par ordre croissant Exemple : Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100 Suite ordonnée xi RJC 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 5 x10 6 x1 2.000 7 x2 2.500 8 x7 2.800 9 x8 2.950 10 x6 3.100 11 x5 3.500

88 Suite ordonnée (croissante) (p. 5)
Objectif classer les données par ordre croissant Exemple : Résultat : suite ordonnée croissante : 1re valeur : la plus petite ; la dernière : la plus élevée Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100 Suite ordonnée xi RJC 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 5 x10 6 x1 2.000 7 x2 2.500 8 x7 2.800 9 x8 2.950 10 x6 3.100 11 x5 3.500

89 Suite ordonnée (croissante) (p. 5)
Objectif classer les données par ordre croissant Exemple : Résultat : suite ordonnée croissante : 1re valeur : la plus petite ; la dernière : la plus élevée Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100 Suite ordonnée xi RJC 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 5 x10 6 x1 2.000 7 x2 2.500 8 x7 2.800 9 x8 2.950 10 x6 3.100 11 x5 3.500

90 Suite ordonnée (croissante) (p. 5)
Objectif classer les données par ordre croissant Exemple : Résultat : suite ordonnée croissante : 1re valeur : la plus petite ; la dernière : la plus élevée amplitude des données : – = 2.400 1re information sur la dispersion, l’écart entre le max et le min Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100 Suite ordonnée xi RJC 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 5 x10 6 x1 2.000 7 x2 2.500 8 x7 2.800 9 x8 2.950 10 x6 3.100 11 x5 3.500

91 2e et 3e étapes : grouper les données

92 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 pp. 5-10 Remarques : ° 1re méthode que nous envisageons ; ° base pour une bonne part de la suite du cours ! ° inutile d’aller plus loin si méthode non maitrisée ! Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

93 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

94 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

95 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

96 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

97 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

98 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

99 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

100 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

101 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

102 Les distributions ou grouper les données
Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si)  mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions :  selon les valeurs observées  selon des classes  données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âge 1 0-< 5 ans 2 5-<10 ans 3 10-<15 ans ...

103 Les distributions selon les valeurs observées
Tableau 1.3 au départ du tableau 1.0 Suite ordonnée (Tableau 1.2 (p. 4)) Distribution selon les valeurs Tableau 1.3 (p. 5) Observation Valeur p Valeur de X ou xp Effectif ou poids ou np 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 2.000 5 x10 2.500 6 x1 2.800 7 x2 2.950 8 x7 3.100 9 x8 3.500 10 x6 Total 11 x5

104 Les distributions selon les valeurs observées
Tableau 1.3 au départ du tableau 1.2 Comment passer du tableau 2 au tableau 3 ? dans nos exemples, peu de lignes en moins, mais si n = … un peu de théorie à propos des distributions pour suivre

105 Les distributions selon les valeurs observées
Tableau 1.3 au départ du tableau 1.2 Comment passer du tableau 2 au tableau 3 ? dans nos exemples, peu de lignes en moins, mais si n = … un peu de théorie à propos des distributions pour suivre

106 Les distributions selon les valeurs observées
Tableau 1.3 au départ du tableau 1.2 Comment passer du tableau 2 au tableau 3 ? dans nos exemples, peu de lignes en moins, mais si n = … exercice 1 : trois 1res colonnes (à faire ensemble sans passer par suite ordo.) un peu de théorie à propos des distributions pour suivre

107 Les distributions selon les valeurs observées
Tableau 1.3 au départ du tableau 1.2 Comment passer du tableau 2 au tableau 3 ? dans nos exemples, peu de lignes en moins, mais si n = … exercice 1 : trois 1res colonnes (à faire ensemble sans passer par suite ordo.) un peu de théorie à propos des distributions pour suivre

108 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque «  xp  », on associe un « np » 

109 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque «  xp  », on associe un « np » 

110 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque «  xp  », on associe un « np »  Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100

111 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque «  xp  », on associe un « np »  Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100

112 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque «  xp  », on associe un « np »  Données i RJC 1 2.000 2 2.500 3 1.800 4 1.600 5 3.500 6 3.100 7 2.800 8 2.950 9 10 11 1.100

113 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque «  xp  », on associe un « np »  Distribution selon les valeurs p xp np 1 1.100 2 1.600 3 1.800 4 2.000 5 2.500 6 2.800 7 2.950 8 3.100 9 3.500 Tot. 11

114 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque «  xp  », on associe un « np »  Distribution selon les valeurs p xp np 1 1.100 2 1.600 3 1.800 4 2.000 5 2.500 6 2.800 7 2.950 8 3.100 9 3.500 Tot. 11

115 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée, soit xp le nombre de « i » concernés np np xp à chaque «  xp  », on associe un « np »  Distribution selon les valeurs p xp np 1 1.100 2 1.600 3 1.800 4 2.000 5 2.500 6 2.800 7 2.950 8 3.100 9 3.500 Tot. 11

116 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée, soit xp le nombre de « i » concernés, soit np np xp à chaque «  xp  », on associe un « np »  Distribution selon les valeurs p xp np 1 1.100 2 1.600 3 1.800 4 2.000 5 2.500 6 2.800 7 2.950 8 3.100 9 3.500 Tot. 11

117 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi »  groupées (tableau 1.3) une ligne = une valeur observée, soit xp le nombre de « i » concernés, soit np np xp à chaque «  xp  », on associe un « np »  Distribution selon les valeurs p xp np 1 1.100 2 1.600 3 1.800 4 2.000 5 2.500 6 2.800 7 2.950 8 3.100 9 3.500 Tot. 11

118 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.3) : à chaque «  xp  », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : si « p » lignes actives « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »

119 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.3) : à chaque «  xp  », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : si « p » lignes actives « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »

120 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.3) : à chaque «  xp  », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : si « p » lignes actives « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »

121 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.3) : à chaque «  xp  », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.3) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »

122 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.3) : à chaque «  xp  », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.3) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »

123 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.3) : à chaque «  xp  », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.3) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »

124 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.3) : à chaque «  xp  », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.3) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P » « n » : le nombre total d’individus

125 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.3) : à chaque «  xp  », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.3) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P » « n » : le nombre total d’individus Notation pour les données individuelles

126 Les distributions selon les valeurs observées
Le retournement statistique (p. 6) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.3) : à chaque «  xp  », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.3) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P » « n » : le nombre total d’individus Notation pour les données groupées Cette notation est considérée comme acquise !

127 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total 11

128 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total 11

129 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total 11

130 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total 11

131 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total 11

132 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total SO 11

133 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total SO 11 « SO » : ° = « sans objet » (et pas 50…) = ne rien mettre dans cette cellule ° le mieux : mettre « SO », mais parfois « - » par la suite !

134 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total SO 11

135 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays, par ex. Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total SO 11

136 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes  poursuivre le regroupement des données  distributions en classes  un tableau avec moins de lignes  données lisibles, utilisables On en revient à l’exemple RJC

137 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes  poursuivre le regroupement des données  distributions en classes  un tableau avec moins de lignes  données lisibles, utilisables On en revient à l’exemple RJC

138 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes  poursuivre le regroupement des données  distributions en classes  un tableau avec moins de lignes  données lisibles, utilisables On en revient à l’exemple RJC

139 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes  poursuivre le regroupement des données  distributions en classes  un tableau avec moins de lignes  données lisibles, utilisables On en revient à l’exemple RJC

140 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes  poursuivre le regroupement des données  distributions en classes  un tableau avec moins de lignes  données lisibles, utilisables On en revient à l’exemple RJC

141 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes  poursuivre le regroupement des données  distributions en classes  un tableau avec moins de lignes  données lisibles, utilisables On en revient à l’exemple RJC

142 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes  poursuivre le regroupement des données  distributions en classes  un tableau avec moins de lignes  données lisibles, utilisables On en revient à l’exemple RJC

143 Les distributions selon les valeurs observées
Distributions et variables qualitatives (p. 10) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes  poursuivre le regroupement des données  distributions en classes  un tableau avec moins de lignes  données lisibles, utilisables On en revient à l’exemple RJC

144 Les distributions en classes
Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 1.3 au tableau 1.4 ? mettre ensemble les valeurs comprises entre : < 2.000 < 3.000 < 4.000 au départ d’une distribution selon les valeurs : facile !

145 Les distributions en classes
Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 1.3 au tableau 1.4 ?

146 Les distributions en classes
Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 1.3 au tableau 1.4 ? mettre ensemble les valeurs comprises entre : 1re ligne : < 2.000

147 Les distributions en classes
Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 1.3 au tableau 1.4 ? mettre ensemble les valeurs comprises entre : 1re ligne : < 2.000

148 Les distributions en classes
Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 1.3 au tableau 1.4 ? mettre ensemble les valeurs comprises entre : 1re ligne : < 2.000 Pourquoi un effectif de 5 ?

149 Les distributions en classes
Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 1.3 au tableau 1.4 ? mettre ensemble les valeurs comprises entre : 1re ligne : < 2.000 Pourquoi un effectif de 5 ? = 5

150 Les distributions en classes
Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 1.3 au tableau 1.4 ? mettre ensemble les valeurs comprises entre : 1re ligne : < 2.000 2e ligne : < 3.000

151 Les distributions en classes
Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 1.3 au tableau 1.4 ? mettre ensemble les valeurs comprises entre : 1re ligne : < 2.000 2e ligne : < 3.000 3e ligne : < 4.000

152 Les distributions en classes
Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 1.3 au tableau 1.4 ? mettre ensemble les valeurs comprises entre : 1re ligne : < 2.000 2e ligne : < 3.000 3e ligne : < 4.000 au départ d’une distribution selon les valeurs : facile !

153 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3

154 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3

155 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes : « p/k » : numéro de la ligne « Bornes des classes » = les limites de chaque classe « Centre de classe » : pour la 1re classe : ( )/2 c’est bien le centre valeur utile pour la suite, symbolisée par « xp »

156 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes : « p/k » : numéro de la ligne (double numérotation nécessaire après) « Bornes des classes » = les limites de chaque classe « Centre de classe » : pour la 1re classe : ( )/2 c’est bien le centre valeur utile pour la suite, symbolisée par « xp »

157 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes : « p/k » : numéro de la ligne (double numérotation nécessaire après) « Bornes des classes » = les limites de chaque classe « Centre de classe » : pour la 1re classe : ( )/2 c’est bien le centre valeur utile pour la suite, symbolisée par « xp »

158 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes : « p/k » : numéro de la ligne (double numérotation nécessaire après) « Bornes des classes » = les limites de chaque classe « Centre de classe » ou « xp » : pour la 1re classe : ( )/2 c’est bien le centre de la classe valeur symbolisée par « xp » = valeur de la variable X de la ligne p pour la 1re classe : x1 valeur utile pour la suite

159 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes : « p/k » : numéro de la ligne (double numérotation nécessaire après) « Bornes des classes » = les limites de chaque classe « Centre de classe » ou « xp » : calcul pour la 1re classe : ( )/2 c’est bien le centre de la classe valeur symbolisée par « xp » = valeur de la variable X de la ligne p pour la 1re classe : x1 valeur utile pour la suite

160 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes : « p/k » : numéro de la ligne (double numérotation nécessaire après) « Bornes des classes » = les limites de chaque classe « Centre de classe » ou « xp » : calcul pour la 1re classe : ( )/2 c’est bien le centre de la classe valeur symbolisée par « xp » = valeur de la variable X de la ligne p pour la 1re classe : x1 valeur utile pour la suite

161 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes : « p/k » : numéro de la ligne (double numérotation nécessaire après) « Bornes des classes » = les limites de chaque classe « Centre de classe » ou « xp » : calcul pour la 1re classe : ( )/2 c’est bien le centre de la classe valeur symbolisée par « xp » = valeur de la variable X de la ligne p pour la 1re classe : x1 valeur utile pour la suite

162 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes : « p/k » : numéro de la ligne (double numérotation nécessaire après) « Bornes des classes » = les limites de chaque classe « Centre de classe » ou « xp » : calcul pour la 1re classe : ( )/2 c’est bien le centre de la classe valeur symbolisée par « xp » = valeur de la variable X de la ligne p pour la 1re classe : x1 = 1.500 valeur utile pour la suite (notamment chapitre 3)

163 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes : « p/k » : numéro de la ligne (double numérotation nécessaire après) « Bornes des classes » = les limites de chaque classe « Centre de classe » ou « xp » : calcul pour la 1re classe : ( )/2 c’est bien le centre de la classe valeur symbolisée par « xp » = valeur de la variable X de la ligne p pour la 1re classe : x1 = 1.500 valeur utile pour la suite (notamment chapitre 3)

164 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes Comment obtenir les colonnes : effectif (np) ? effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3

165 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3

166 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3

167 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? effectif cumulé de la 2e ligne : 9 = ligne total : « SO » = « sans objet » = on ne met rien ! Imitation pour l’exercice d’application : au départ du tableau 2, remplir les 5 premières colonnes du tableau 3

168 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? effectif cumulé de la 2e ligne : 9 = ligne total : « SO » = « sans objet » = on ne met rien ! Imitation pour l’exercice d’application : au départ du tableau 2, remplir les 5 premières colonnes du tableau 3 « SO » à ne pas confondre avec « 50 » !

169 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? 2e ligne : 9 = ligne total : « SO » = « sans objet » = on ne met rien ! Imitation pour l’exercice d’application : au départ du tableau 2, remplir les 5 premières colonnes du tableau 3 Rappel / conseil : ° plutôt mettre « SO » pour « Sans Objet » ° et pas « - » comme fait erronément parfois !

170 Les distributions en classes
Tableau 1.4 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes = description des classes Comment obtenir les colonnes Interprétation N2 = 9 : 9 observations inférieures à C/J effectif cumulé et variables qualitatives ?

171 Les distributions en classes
Exercices 1, 2 et 3 : remplir les colonnes « classe » ou « p/k » ; « xp », éventuellement = « centre de classe » « effectif (simple) » ou « np » « effectif cumulé » ou « Nk » désignation et interprétation des «np» et «Nk» ! Les 3 écrans suivants dans vos blocs de feuilles = espaces pour les exercices 1 à 3 ! Les données (reprises de la page 2 du syllabus) : poids en kg des 11 individus : 65, 51, 72, 35, 72, 65, 58, 51, 51, 51, 24.

172 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées p/k xp np Nk 24 35 51 58 65 72 Total

173 Les distributions en classes
Exercice 2. Distribution des poids en classes p/k Bornes xp np Nk 0-<20 20-<40 40-<60 60-<80 80-<100 Total

174 Les distributions en classes
Exercice 3. Distribution des nationalités p/k Nationalité np Nk Belge 122 Marocain 37 Français 19 Autre 23 Total

175 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Données en p. 2 du syllabus : tableau 1.1

176 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Mais d’abord la suite ordonnée croissante Données i Poids 1 65 2 51 3 72 4 35 5 6 7 58 8 9 10 11 24 Suite ordonnée xi Poids 1 x11 24 2 x4 35 3 x2 51 4 x8 5 x9 6 x10 7 x7 58 8 x1 65 9 x6 10 x3 72 11 x5

177 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Données i Poids 1 65 2 51 3 72 4 35 5 6 7 58 8 9 10 11 24 Suite ordonnée xi Poids 1 x11 24 2 x4 35 3 x2 51 4 x8 5 x9 6 x10 7 x7 58 8 x1 65 9 x6 10 x3 72 11 x5 Distribution des poids p/k xp np Nk 1 24 2 35 3 51 4 6 58 7 5 65 9 72 11 Total SO

178 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 4 « i », le poids est de 51 kg N3=  ° effectif cumulé de la 3e ligne ° 6 « i » présentent une valeur égale ou inférieure à 51 kg f3= 36,36%  ° fréquence (simple) de la 3e ligne ° 36,36% des « i » ont un poids de 51 kg p/k xp np Nk fp Fk 1 24 9,09 % 9,09 % 2 35 18,18 % 3 51 4 6 36,36 % 54,55 % 58 7 63,64 % 5 65 9 81,82 % 72 11 100,00 % Total SO

179 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 4 « i », le poids est de 51 kg N3=  ° effectif cumulé de la 3e ligne ° 6 « i » présentent une valeur égale ou inférieure à 51 kg f3= 36,36%  ° fréquence (simple) de la 3e ligne ° 36,36% des « i » ont un poids de 51 kg p/k xp np Nk fp Fk 1 24 9,09 % 9,09 % 2 35 18,18 % 3 51 4 6 36,36 % 54,55 % 58 7 63,64 % 5 65 9 81,82 % 72 11 100,00 % Total SO Dans ce cas, «  xp  » :   du centre de classe (pas de classe)  une valeur citée au moins une fois

180 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 4 « i », le poids est de 51 kg N3=  ° effectif cumulé de la 3e ligne ° 6 « i » présentent une valeur égale ou inférieure à 51 kg p/k xp np Nk fp Fk 1 24 9,09 % 9,09 % 2 35 18,18 % 3 51 4 6 36,36 % 54,55 % 58 7 63,64 % 5 65 9 81,82 % 72 11 100,00 % Total SO Dans ce cas, «  xp  » :   du centre de classe (pas de classe)  une valeur citée au moins une fois

181 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 4 « i », le poids est de 51 kg N3=  ° effectif cumulé de la 3e ligne ° 6 « i » présentent une valeur égale ou inférieure à 51 kg p/k xp np Nk fp Fk 1 24 9,09 % 9,09 % 2 35 18,18 % 3 51 4 6 36,36 % 54,55 % 58 7 63,64 % 5 65 9 81,82 % 72 11 100,00 % Total SO Dans ce cas, «  xp  » :   du centre de classe (pas de classe)  une valeur citée au moins une fois

182 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 4 « i », le poids est de 51 kg N3=  ° effectif cumulé de la 3e ligne ° 6 « i » présentent une valeur égale ou inférieure à 51 kg p/k xp np Nk fp Fk 1 24 9,09 % 9,09 % 2 35 18,18 % 3 51 4 6 36,36 % 54,55 % 58 7 63,64 % 5 65 9 81,82 % 72 11 100,00 % Total SO Dans ce cas, «  xp  » :   du centre de classe (pas de classe)  une valeur citée au moins une fois

183 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 4 « i », le poids est de 51 kg N3=  ° effectif cumulé de la 3e ligne ° 6 « i » présentent une valeur égale ou inférieure à 51 kg p/k xp np Nk fp Fk 1 24 9,09 % 9,09 % 2 35 18,18 % 3 51 4 6 36,36 % 54,55 % 58 7 63,64 % 5 65 9 81,82 % 72 11 100,00 % Total SO Dans ce cas, «  xp  » :   du centre de classe (pas de classe)  une valeur citée au moins une fois

184 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 4 « i », le poids est de 51 kg N3=  ° effectif cumulé de la 3e ligne ° 6 « i » présentent une valeur égale ou inférieure à 51 kg p/k xp np Nk fp Fk 1 24 9,09 % 9,09 % 2 35 18,18 % 3 51 4 6 36,36 % 54,55 % 58 7 63,64 % 5 65 9 81,82 % 72 11 100,00 % Total SO Dans ce cas, «  xp  » :   du centre de classe (pas de classe)  une valeur citée au moins une fois Bien distinguer : ° désignation : donner un nom au nombre ° interprétation : faire une phrase pour expliquer ce que le nombre signifie

185 Les distributions en classes
Exercice 2. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3=  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° pour 63,64% des « i », le poids est inférieur à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO Dans ce cas, «  xp  » :  = du centre de classe

186 Les distributions en classes
Exercice 2. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3=  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° pour 63,64% des « i », le poids est inférieur à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO Dans ce cas, «  xp  » :  = du centre de classe

187 Les distributions en classes
Exercice 2. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3=  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° pour 63,64% des « i », le poids est inférieur à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO Dans ce cas, «  xp  » :  = du centre de classe

188 Les distributions en classes
Exercice 2. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3=  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° pour 63,64% des « i », le poids est inférieur à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO Dans ce cas, «  xp  » :  = du centre de classe Différence par rapport à distribution selon les valeurs

189 Les distributions en classes
Exercice 2. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3=  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° pour 63,64% des « i », le poids est inférieur à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO Dans ce cas, «  xp  » :  = du centre de classe Bien distinguer : ° désignation : donner un nom au nombre ° interprétation : faire une phrase pour expliquer ce que le nombre signifie ° savoir tout faire !

190 Les distributions en classes
Exercice 3. Distribution de la variable « nationalité » Remarques : variable qualitative : cf. colonne « Autres codes » ne pas calculer les effectifs et fréquences cumulés en effet, pas d’ordre au contraire de la variable « poids » regroupements possibles p/k Nationalité Autres codes np Nk fp Fk 1 Belge 1 ou B 122 . 60,70% S. O. 2 Marocaine 2 ou M 37 18,41% 3 Française 3 ou F 19 9,45% 4 Autre 4 ou Au 23 11,44% Total 201 100,00% Dans ce cas, si on veut mettre un «  xp  » :  colonne « Nationalité »

191 Les distributions en classes
Exercice 3. Distribution de la variable « nationalité » Remarques : variable qualitative : cf. colonne « Autres codes » ne pas calculer les effectifs et fréquences cumulés en effet, pas d’ordre au contraire de la variable « poids » regroupements possibles p/k Nationalité Autres codes np Nk fp Fk 1 Belge 1 ou B 122 . 60,70% S. O. 2 Marocaine 2 ou M 37 18,41% 3 Française 3 ou F 19 9,45% 4 Autre 4 ou Au 23 11,44% Total 201 100,00% Dans ce cas, si on veut mettre un «  xp  » :  colonne « Nationalité »

192 Les distributions en classes
Exercice 3. Distribution de la variable « nationalité » Remarques : variable qualitative : cf. colonne « Autres codes » ne pas calculer les effectifs et fréquences cumulés en effet, pas d’ordre au contraire de la variable « poids » regroupements possibles p/k Nationalité Autres codes np Nk fp Fk 1 Belge 1 ou B 122 . 60,70% S. O. 2 Marocaine 2 ou M 37 18,41% 3 Française 3 ou F 19 9,45% 4 Autre 4 ou Au 23 11,44% Total 201 100,00% Dans ce cas, si on veut mettre un «  xp  » :  colonne « Nationalité »

193 Les distributions en classes
Exercice 3. Distribution de la variable « nationalité » Remarques : variable qualitative : cf. colonne « Autres codes » si N2 = 159, comment l’interpréter ? ne pas calculer les effectifs cumulés en effet, pas d’ordre au contraire de la variable « poids » regroupements possibles p/k Nationalité Autres codes np Nk fp Fk 1 Belge 1 ou B 122 . 60,70% S. O. 2 Marocaine 2 ou M 37 159. 18,41% 3 Française 3 ou F 19 9,45% 4 Autre 4 ou Au 23 11,44% Total 201 100,00% Dans ce cas, si on veut mettre un «  xp  » :  colonne « Nationalité »

194 Les distributions en classes
Exercice 3. Distribution de la variable « nationalité » Remarques : variable qualitative : cf. colonne « Autres codes » si N2 = 159, comment l’interpréter ? ne pas calculer les effectifs cumulés en effet, pas d’ordre au contraire de la variable « poids » regroupements possibles p/k Nationalité Autres codes np Nk fp Fk 1 Belge 1 ou B 122 S. O. 60,70% 2 Marocaine 2 ou M 37 18,41% 3 Française 3 ou F 19 9,45% 4 Autre 4 ou Au 23 11,44% Total 201 100,00% Dans ce cas, si on veut mettre un «  xp  » :  colonne « Nationalité »

195 Les distributions en classes
Exercice 3. Distribution de la variable « nationalité » Remarques : variable qualitative : cf. colonne « Autres codes » si N2 = 159, comment l’interpréter ? ne pas calculer les effectifs cumulés en effet, pas d’ordre au contraire de la variable « poids » regroupements possibles : européens et non-européens p/k Nationalité Autres codes np Nk fp Fk 1 Belge 1 ou B 122 S. O. 60,70% 2 Marocaine 2 ou M 37 18,41% 3 Française 3 ou F 19 9,45% 4 Autre 4 ou Au 23 11,44% Total 201 100,00% Dans ce cas, si on veut mettre un «  xp  » :  colonne « Nationalité »

196 Les distributions en classes
Fin provisoire des exercices 1 à 3 Retour à la théorie pour les effectifs et les fréquences Puis retour aux exercices

197 Les distributions en classes : théorie
Tableau 1.4 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)

198 Les distributions en classes : théorie
Tableau 1.4 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)

199 Les distributions en classes : théorie
Tableau 1.4 Méthode d’application pour : variables continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)

200 Les distributions en classes : théorie
Tableau 1.4 Méthode d’application pour : variables continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contigües bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous)

201 Les distributions en classes : théorie
Tableau 1.4 Les effectifs (absolus) ou np nombre d’observations dans la classe p distribuer les observations dans les classes  « DISTRIBUTION » notation : 1.500  5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1  n1 : généralisation pour toutes les 1res lignes xp  np : généralisation pour toutes les lignes

202 Les distributions en classes : théorie
Tableau 1.4 Les effectifs (absolus) ou np nombre d’observations dans la classe p distribuer les observations dans les classes  « DISTRIBUTION » notation : 1.500  5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1  n1 : généralisation pour toutes les 1res lignes xp  np : généralisation pour toutes les lignes

203 Les distributions en classes : théorie
Tableau 1.4 Les effectifs (absolus) ou np nombre d’observations dans la classe p  observations distribuées dans les classes  « DISTRIBUTION » notation : 1.500  5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1  n1 : généralisation pour toutes les 1res lignes xp  np : généralisation pour toutes les lignes

204 Les distributions en classes : théorie
Tableau 1.4 Les effectifs (absolus) ou np nombre d’observations dans la classe p  observations distribuées dans les classes  « DISTRIBUTION » notation : 1.500  5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1  n1 : généralisation pour toutes les 1res lignes xp  np : généralisation pour toutes les lignes

205 Les distributions en classes : théorie
Tableau 1.4 Les effectifs (absolus) ou np nombre d’observations dans la classe p  observations distribuées dans les classes  « DISTRIBUTION » notation : 1.500  5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1  n1 : généralisation pour toutes les 1res lignes xp  np : généralisation pour toutes les lignes

206 Les distributions en classes : théorie
Tableau 1.4 Les effectifs (absolus) ou np nombre d’observations dans la classe p  observations distribuées dans les classes  « DISTRIBUTION » notation : 1.500  5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1  n1 : généralisation pour toutes les 1res lignes xp  np : généralisation pour toutes les lignes

207 Les distributions en classes : théorie
Tableau 1.4 Les effectifs (absolus) ou np nombre d’observations dans la classe p  observations distribuées dans les classes  « DISTRIBUTION » notation : 1.500  5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1  n1 : généralisation pour la 1re ligne de tous les tableaux xp  np : généralisation pour toutes les lignes

208 Les distributions en classes : théorie
Tableau 1.4 Les effectifs (absolus) ou np nombre d’observations dans la classe p  observations distribuées dans les classes  « DISTRIBUTION » notation : 1.500  5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1  n1 : généralisation pour la 1re ligne de tous les tableaux xp  np : généralisation pour toutes les lignes de tous les tableaux

209 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)

210 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)

211 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)

212 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)

213 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)

214 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)

215 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)

216 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)

217 Les distributions en classes : théorie
Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs  np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne

218 Les distributions en classes : théorie
Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs  np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne

219 Les distributions en classes : théorie
Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs  np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne

220 Les distributions en classes : théorie
Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs  np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne

221 Les distributions en classes : théorie
Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs  np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne

222 Les distributions en classes : théorie
Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs  np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne

223 Les distributions en classes : théorie
Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs  np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne entre le 1er et le dernier, on prend « tout » !

224 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque formule « officielle » (cf. formulaire) Rappel : « P » = nombre de lignes actives dans le tableau

225 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque formule « officielle » (cf. formulaire)

226 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.4 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque formule « officielle » (cf. formulaire)

227 Les distributions en classes : théorie
Tableau 1.4 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation Équivalence entre l’idée initiale et la formule ! formule « officielle » (cf. formulaire)

228 Les distributions en classes : théorie
Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant C/J

229 Les distributions en classes : théorie
Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant C/J

230 Les distributions en classes : théorie
Effectif cumulé définition : somme des effectifs de la classe k (avec k qui fonctionne comme p) des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant C/J

231 Les distributions en classes : théorie
Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant C/J

232 Les distributions en classes : théorie
Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant C/J

233 Les distributions en classes : théorie
Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant C/J

234 Les distributions en classes : théorie
Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant C/J

235 Les distributions en classes : théorie
Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre distribution : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :

236 Les distributions en classes : théorie
Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple ne venant pas du tableau 1.5 : si k = 6 et P = 10 si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :

237 Les distributions en classes : théorie
Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :

238 Les distributions en classes : théorie
Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :

239 Les distributions en classes : théorie
Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :

240 Les distributions en classes : théorie
Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :

241 Les distributions en classes : théorie
Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :

242 Les distributions en classes : théorie
Un truc pour faciliter le calcul : p/k Bornes xp np Nk 1 0 -< 5 2,5 75.687 2 5-< 10 7,5 62.367 3 10 -< 15 12,5 57.085 4 15 -< 20 17,5 58.149 5 20 -< 25 22,5 69.594 Total SO

243 Les distributions en classes : théorie
Un truc pour faciliter le calcul : p/k Bornes xp np Nk 1 0 -< 5 2,5 75.687 2 5-< 10 7,5 62.367 3 10 -< 15 12,5 57.085 4 15 -< 20 17,5 58.149 5 20 -< 25 22,5 69.594 Total SO

244 Les distributions en classes : théorie
Un truc pour faciliter le calcul : p/k Bornes xp np Nk 1 0 -< 5 2,5 75.687 2 5-< 10 7,5 62.367 3 10 -< 15 12,5 57.085 4 15 -< 20 17,5 58.149 5 20 -< 25 22,5 69.594 Total SO

245 Les distributions en classes : théorie
Un truc pour faciliter le calcul : p/k Bornes xp np Nk 1 0 -< 5 2,5 75.687 2 5-< 10 7,5 62.367 3 10 -< 15 12,5 57.085 4 15 -< 20 17,5 58.149 5 20 -< 25 22,5 69.594 Total SO

246 Les distributions en classes : théorie
Un truc pour faciliter le calcul : p/k Bornes xp np Nk 1 0 -< 5 2,5 75.687 2 5-< 10 7,5 62.367 3 10 -< 15 12,5 57.085 4 15 -< 20 17,5 58.149 5 20 -< 25 22,5 69.594 Total SO

247 Les distributions en classes : théorie
Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !

248 Les distributions en classes : théorie
Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !

249 Les distributions en classes : théorie
Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !

250 Les distributions en classes : théorie
Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !

251 Les distributions en classes : théorie
Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !

252 Les distributions en classes : théorie
Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !

253 Les distributions en classes
Les fréquences (simples ou cumulées) cumulées) Observer les 2 dernières colonnes Comment obtenir la colonne des fréquences (fp) ? fréquences cumulées (Fk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 2 dernières colonnes du tableau 3

254 Les distributions en classes
Les fréquences (cumulées) Observer les 2 dernières colonnes Comment obtenir la colonne des fréquences (fp) ? fréquences cumulées (Fk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 2 dernières colonnes du tableau 3

255 Les distributions en classes
Les fréquences (cumulées) Observer les 2 dernières colonnes Sur la 2e ligne, comment obtenir la colonne des fréquences (fp) ? 0,36 = 4/11 fréquences cumulées (Fk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 2 dernières colonnes du tableau 3

256 Les distributions en classes
Les fréquences (cumulées) Observer les 2 dernières colonnes Sur la 2e ligne, comment obtenir la colonne des fréquences (fp) ? 0,36 = 4/11 fréquences cumulées (Fk) ? 0,82 = 9/11 Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 2 dernières colonnes du tableau 3

257 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

258 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

259 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

260 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

261 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

262 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

263 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

264 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

265 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

266 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

267 Les distributions en classes
Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe

268 Les distributions en classes
Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »

269 Les distributions en classes
Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »

270 Les distributions en classes
Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »

271 Les distributions en classes
Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »

272 Les distributions en classes
Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »

273 Les distributions en classes
Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »

274 Les distributions en classes
Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »

275 Les distributions en classes
Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix » Attention : arrondir n’est pas tronquer : Exemple : 7/11 = 0,6363… ° = 0,64 si arrondi à 2 décimales ° = 0,63 si tronqué à la 2e décimale.

276 Les distributions en classes
Les fréquences ou « fp » généralisation : La somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?

277 Les distributions en classes
Les fréquences ou « fp » généralisation : La somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?

278 Les distributions en classes
Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?

279 Les distributions en classes
Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?

280 Les distributions en classes
Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! (Plus tard) Une question ? Pourquoi calculer les fréquences ?

281 Les distributions en classes
Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant C/J

282 Les distributions en classes
Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant C/J

283 Les distributions en classes
Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant C/J

284 Les distributions en classes
Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant C/J

285 Les distributions en classes
Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant C/J

286 Les distributions en classes
Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant C/J

287 Les distributions en classes
Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant C/J

288 Les distributions en classes
Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant C/J

289 Les distributions en classes
Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant C/J

290 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

291 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

292 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

293 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

294 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

295 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

296 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

297 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

298 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

299 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant

300 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant + exercice dans le syllabus

301 Les distributions en classes
Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 !  Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant + exercice dans le syllabus Plutôt prendre la 2e formule : moins de problèmes d’arrondis

302 Les distributions en classes
Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe) Fk en cas de variable qualitative ? Pourquoi calculer les Fk ?

303 Les distributions en classes
Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe) Fk en cas de variable qualitative ? Pourquoi calculer les Fk ?

304 Les distributions en classes
Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe)

305 Les distributions en classes
Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe)

306 Les distributions en classes
Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe)

307 Les distributions en classes
Exercices 1, 2 et 3 : remplir rapidement les colonnes « fréquence (simple) » ou « fp » « fréquence cumulée » ou « Fk » correction dans minutes Exercice 4 (type de question souvent posé) Exercice 5 (idem) Exercice 6 (sur données réelles) Exercice 7 (idem) Exercice 8 (idem) : calculs déjà faits  commentaires Rappel des formules :

308 Les distributions en classes
Exercice 1. Distribution des poids en classes : np p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

309 Les distributions en classes
Exercice 2. Distribution des poids en classes : np p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

310 Les distributions en classes
Exercice 2. Distribution des poids en classes : Nk p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

311 Les distributions en classes
Exercice 2. Distribution des poids en classes : Nk p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

312 Les distributions en classes
Exercice 2. Distribution des poids en classes : Nk Formule à privilégier ! p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

313 Les distributions en classes
Exercice 2. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

314 Les distributions en classes
Exercice 2. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n Si méthode applicable à une cellule, ° applicable à toutes les cellules de la colonne, ° y compris pour la ligne « Total » ° sauf exception (sans objet).

315 Les distributions en classes
Exercice 2. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n Si méthode applicable à une cellule, ° applicable à toutes les cellules de la colonne, ° y compris pour la ligne « Total » ° sauf exception (sans objet).

316 Les distributions en classes
Exercice 2. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n Si méthode applicable à une cellule, ° applicable à toutes les cellules de la colonne, ° y compris pour la ligne « Total » ° sauf exception (sans objet).

317 Les distributions en classes
Exercice 2. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n Si méthode applicable à une cellule, ° applicable à toutes les cellules de la colonne, ° y compris pour la ligne « Total » ° sauf exception (« Sans objet »).

318 Les distributions en classes
Exercice 2. Distribution des poids en classes : Fk p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

319 Les distributions en classes
Exercice 2. Distribution des poids en classes : Fk p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

320 Les distributions en classes
Exercice 2. Distribution des poids en classes : Fk p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

321 Les distributions en classes
Exercice 2. Distribution des poids en classes : Fk Formule à privilégier ! p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

322 Les distributions en classes
Exercice 2. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3=  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° pour 63,64% des « i », le poids est inférieur à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

323 Les distributions en classes
Exercice 2. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3=  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° pour 63,64% des « i », le poids est inférieur à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

324 Les distributions en classes
Exercice 2. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3=  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° pour 63,64% des « i », le poids est inférieur à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

325 Les distributions en classes
Exercice 2. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3=  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° 63,64% des observations sont inférieures à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

326 Les distributions en classes
Exercice 1. Distribution des poids selon les valeurs observées Exemples de désignation/interprétation des résultats : n3=  ° effectif (simple) de la 3e ligne ° pour 4 « i », le poids est de 51 kg N3=  ° effectif cumulé de la 3e ligne ° 6 « i » présentent une valeur égale ou inférieure à 51 kg f3= 36,36%  ° fréquence (simple) de la 3e ligne ° 36,36% des « i » ont un poids de 51 kg F3= 54,55%  ° fréquence cumulée de la 3e ligne ° 54,55% des « i » ont un poids égal ou inférieur à 51 kg p/k xp np Nk fp Fk 1 24 9,09 % 9,09 % 2 35 18,18 % 3 51 4 6 36,36 % 54,55 % 58 7 63,64 % 5 65 9 81,82 % 72 11 100,00 % Total SO

327 Les distributions en classes
Exercice 3. Distribution de la variable « nationalité » Remarques : variable qualitative : cf. colonne « Autres codes » ne pas calculer les effectifs et fréquences cumulés en effet, pas d’ordre au contraire de la variable « poids » p/k Nationalité Autres codes np Nk fp Fk 1 Belge 1 ou B 122 S. O. 60,70% 2 Marocaine 2 ou M 37 18,41% 3 Française 3 ou F 19 9,45% 4 Autre 4 ou Au 23 11,44% Total 201 100,00%

328 Les distributions en classes
Exercice 4. Distribution des revenus mensuels. Données Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. Question fréquemment posée à l’examen…

329 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Correction disponible sur claroline Interprétation de données p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot.

330 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Variable et individus sous observation Interprétation de données p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot.

331 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Variable et individus sous observation Interprétation de données p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. Revenus mensuels et adultes d’une localité

332 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Variable et individus sous observation Interprétation de données : p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. ° pour 60 « i », les revenus vont de à moins de 3.000 ° 110 individus disposent de revenus inférieurs à 3.000 ° 55% des individus gagnent moins de 3.000

333 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Variable et individus sous observation Interprétation de données : p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. ° pour 60 « i », les revenus vont de à moins de 3.000 ° 110 individus disposent de revenus inférieurs à 3.000 ° 55% des individus gagnent moins de 3.000

334 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Variable et individus sous observation Interprétation de données : p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. ° pour 60 « i », les revenus vont de à moins de 3.000 ° 110 individus disposent de revenus inférieurs à 2.000 ° 55% des individus gagnent moins de 3.000

335 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Variable et individus sous observation Interprétation de données : p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. ° pour 60 « i », les revenus vont de à moins de 3.000 ° 110 individus disposent de revenus inférieurs à 2.000 ° 55% des individus gagnent moins de 2.000

336 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot.

337 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. SO

338 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. SO

339 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 0,85 4 3.000-<4.000 3.500 Tot. SO

340 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 0,85 4 3.000-<4.000 3.500 Tot. SO

341 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

342 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

343 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

344 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

345 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? Éventuellement oui : les fp p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

346 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : ( )/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = = 170 Autre(s) indice(s) ? Généralement, c’est ici que cela coince ! p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

347 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver sur base d’une manipulation des équations théoriques (cf. p. XII) trouver un élément inconnu et une équation où il serait la seule inconnue Exemple : où F2 et N2 sont connus  calcul de n p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

348 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver sur base d’une manipulation des équations théoriques (cf. p. XII) trouver un élément inconnu et une équation où il serait la seule inconnue Exemple : où F2 et N2 sont connus  calcul de n p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

349 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver sur base d’une manipulation des équations théoriques (cf. p. XII) trouver un élément inconnu et une équation où il serait la seule inconnue Exemple : où F2 et N2 sont connus  calcul de n p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

350 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver sur base d’une manipulation des équations théoriques (cf. p. XII) trouver un élément inconnu et une équation où il serait la seule inconnue Exemple : où F2 et N2 sont connus  calcul de n p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

351 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple :

352 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple : Explication qui va suivre : détaillée ! Si vous connaissez des raccourcis, tant mieux ! (Cf. correction sur le site)

353 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple :

354 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple :

355 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple :

356 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple :

357 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple :

358 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple :

359 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple :

360 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple : À mon avis, attendre le dernier moment pour introduire les nombres dans la formule ! Pourquoi ?

361 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple : 200

362 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Moins évident à trouver Exemple : 200 200 Une 2e fois dans le tableau

363 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Autre exemple : Exemple : avec F2 et f1 connues  f2 200 200

364 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Autre exemple : Exemple : 200 200

365 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Autre exemple : Exemple : 200 200

366 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Autre exemple : Exemple : 200 200

367 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Autre exemple : Exemple : 200 200

368 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Autre exemple : Exemple : 0,45 200 200

369 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver Après des valeurs plus difficiles : équations et manipulation Quand le tableau est complet, vérifications : retrouver une valeur par différents chemins déjà faire des vérifications en cours de route

370 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver Après des valeurs plus difficiles : équations et manipulation Quand le tableau est complet, vérifications : retrouver une valeur par différents chemins déjà faire des vérifications en cours de route

371 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver Après des valeurs plus difficiles : équations et manipulation Quand le tableau est complet, vérifications : retrouver une valeur par différents chemins déjà faire des vérifications en cours de route

372 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver Après des valeurs plus difficiles : équations et manipulation Quand le tableau est complet, vérifications : retrouver une valeur par différents chemins déjà faire des vérifications en cours de route repérer au fur et à mesure les résultats certains

373 Les distributions en classes
Exercice 4. Distribution des revenus mensuels Les cases devant rester vides (SO) Valeurs faciles à trouver Après des valeurs plus difficiles : équations et manipulation Quand le tableau est complet, vérifications : retrouver une valeur par différents chemins déjà faire des vérifications en cours de route repérer au fur et à mesure les résultats certains

374 Les distributions en classes
Exercices 1, 2 et 3 : remplir rapidement les colonnes Exercice 4 (type de question souvent posé) Exercice 5 (idem)  correction dans 10 minutes Exercice 6 (sur données réelles) Exercice 7 (idem) Exercice 8 (idem) : calculs déjà faits  commentaires Syllabus : exercice 1.8 Rappel des formules (p. XII du syllabus) :

375 Les distributions en classes
Exercice 5. Distribution du poids dans une localité Remarques : méthode : cf. exercice 4 ici, les résultats sont moins évidents dès lors les manipulations théoriques sont plus utiles p/k Bornes (en kg) xp np Nk fp Fk 1 0-<20 10 875 0,07 2 20-<40 30 1.625 2.500 0,13 0,20 3 40-<60 50 4.000 6.500 0,32 0,52 4 60-<80 70 2.625 9.125 0,21 0,73 5 80-<100 90 3.375 12.500 0,27 1,00 Tot. SO

376 Les distributions en classes
Exercice 5. Distribution du poids dans une localité Remarques : méthode : cf. exercice 4 ici, les résultats sont moins évidents dès lors les manipulations théoriques sont plus utiles p/k Bornes (en kg) xp np Nk fp Fk 1 0-<20 10 875 0,07 2 20-<40 30 1.625 2.500 0,13 0,20 3 40-<60 50 4.000 6.500 0,32 0,52 4 60-<80 70 2.625 9.125 0,21 0,73 5 80-<100 90 3.375 12.500 0,27 1,00 Tot. SO

377 Les distributions en classes
Exercice 5. Distribution du poids dans une localité Remarques : méthode : cf. exercice 4 ici, les résultats sont moins évidents dès lors les manipulations théoriques sont plus utiles p/k Bornes (en kg) xp np Nk fp Fk 1 0-<20 10 875 0,07 2 20-<40 30 1.625 2.500 0,13 0,20 3 40-<60 50 4.000 6.500 0,32 0,52 4 60-<80 70 2.625 9.125 0,21 0,73 5 80-<100 90 3.375 12.500 0,27 1,00 Tot. SO

378 Les distributions en classes
Exercice 5. Distribution du poids dans une localité Remarques : méthode : cf. exercice 4 ici, les résultats sont moins évidents  dès lors les manipulations théoriques sont plus utiles p/k Bornes (en kg) xp np Nk fp Fk 1 0-<20 10 875 0,07 2 20-<40 30 1.625 2.500 0,13 0,20 3 40-<60 50 4.000 6.500 0,32 0,52 4 60-<80 70 2.625 9.125 0,21 0,73 5 80-<100 90 3.375 12.500 0,27 1,00 Tot. SO

379 Les distributions en classes
Exercice 6. Distribution de l’âge sur données réelles Remarques : méthode : cf. exercice 4 ici, les résultats ne sont pas du tout évidents  les manipulations théoriques sont indispensables attendre le dernier moment pour remplacer les symboles par les nombres lors des manipulations, si uniquement emploi des nombres : procédure longue et fastidieuse ne pas s’étonner de trébucher p/k Bornes xp np Nk fp Fk 1 6-<9 ans 7,5 21,46% 2 9-<12 ans 10,5 24,26% 45,72% 3 12-<15 ans 13,5 27,77% 73,48% 4 15-<18 ans 16,5 26,52% 100,00% Tot. SO 1,00

380 Les distributions en classes
Exercice 6. Distribution de l’âge sur données réelles Remarques : méthode : cf. exercice 4 ici, les résultats ne sont pas du tout évidents  les manipulations théoriques sont indispensables attendre le dernier moment pour remplacer les symboles par les nombres lors des manipulations, si uniquement emploi des nombres : procédure longue et fastidieuse ne pas s’étonner de trébucher p/k Bornes xp np Nk fp Fk 1 6-<9 ans 7,5 21,46% 2 9-<12 ans 10,5 24,26% 45,72% 3 12-<15 ans 13,5 27,77% 73,48% 4 15-<18 ans 16,5 26,52% 100,00% Tot. SO 1,00

381 Les distributions en classes
Exercice 6. Distribution de l’âge sur données réelles Remarques : méthode : cf. exercice 4 ici, les résultats ne sont pas du tout évidents  les manipulations théoriques sont indispensables attendre le dernier moment pour remplacer les symboles par les nombres lors des manipulations, si uniquement emploi des nombres : procédure longue et fastidieuse ne pas s’étonner de trébucher p/k Bornes xp np Nk fp Fk 1 6-<9 ans 7,5 21,46% 2 9-<12 ans 10,5 24,26% 45,72% 3 12-<15 ans 13,5 27,77% 73,48% 4 15-<18 ans 16,5 26,52% 100,00% Tot. SO 1,00 Faites encore comme vous le voulez !

382 Les distributions en classes
Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) Pourquoi calculer les fréquences ? p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% S.O. Total

383 Les distributions en classes
Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% S.O. Total

384 Les distributions en classes
Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% S.O. Total

385 Les distributions en classes
Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% S.O. Total

386 Les distributions en classes
Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% Tot. S.O.

387 Les distributions en classes
Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste plus marqué du côté des demandeurs : cf. 50 ans et + demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Remarques à propos des données de l’exercice : ° distributions déjà établies ° expliquer les 3 colonnes Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

388 Les distributions en classes
Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste plus marqué du côté des demandeurs : cf. 50 ans et + demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

389 Les distributions en classes
Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste plus marqué du côté des demandeurs : cf. 50 ans et + demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

390 Les distributions en classes
Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste plus marqué du côté des demandeurs : cf. 50 ans et + demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

391 Les distributions en classes
Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

392 Les distributions en classes
Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

393 Les distributions en classes
Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les chômeurs < 30 ans  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

394 Les distributions en classes
Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les chômeurs < 30 ans  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

395 Les distributions en classes
Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les chômeurs < 30 ans  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

396 Les distributions en classes
Retour à la théorie :

397 Les distributions en classes
Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92  difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences « Pourquoi calculer un indice ? » = question importante : elle permet de voir à quoi la méthode peut servir ! Il est donc légitime/souhaitable de se poser cette question ! p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total 190 92

398 Les distributions en classes
Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92  difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total 190 92

399 Les distributions en classes
Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92  difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total 190 92

400 Les distributions en classes
Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92  difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total 190 92

401 Les distributions en classes
Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92  difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total 190 92

402 Les distributions en classes
Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile pourquoi ? car totaux différents : 190 ≠ (même si ici du simple au double…)  difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total 190 92

403 Les distributions en classes
Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile pourquoi ? car totaux différents : 190 ≠ (même si ici du simple au double…)  difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total 190 92

404 Les distributions en classes
Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile pourquoi ? car totaux différents : 190 ≠ (même si ici du simple au double…)  difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total 190 92

405 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !

406 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !

407 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !

408 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !

409 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !

410 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !

411 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !

412 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !

413 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !

414 Les distributions en classes
Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS intéressant de calculer les fréquences !

415 Les distributions en classes
Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? En échec (< 10) ? Inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fk en cas de variable qualitative ? selon les valeurs : cf. p. 10 selon des « classes » : en union <> pas en union Variable quantitative selon les valeurs : exercice d’application Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total SOb

416 Les distributions en classes
Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? En échec (< 10) ? Inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fk en cas de variable qualitative ? selon les valeurs : cf. p. 10 selon des « classes » : en union <> pas en union Variable quantitative selon les valeurs : exercice d’application Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total SOb

417 Les distributions en classes
Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? % en échec (< 10) ? % inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fk en cas de variable qualitative ? selon les valeurs : cf. p. 10 selon des « classes » : en union <> pas en union Variable quantitative selon les valeurs : exercice d’application Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total SOb

418 Les distributions en classes
Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? % en échec (< 10) ? % inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fk en cas de variable qualitative ? selon les valeurs : cf. p. 9 selon des « classes » : en union <> pas en union Variable quantitative selon les valeurs : exercice d’application Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total SOb

419 Les distributions en classes
Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? % en échec (< 10) ? % inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total SOb

420 Les distributions en classes
Variables qualitatives et distribution (p. 10) Peut-on calculer des effectifs ? Oui effectifs cumulés ? Non fréquences ? Oui fréquences cumulées ? Non Exemple en page 10 Sans objet p/k xp np Nk fp Fk 1 Cohabitant(e) 2 SO 0,18 Marié(e) 3 Divorcé(e) 0,09 4 Célibataire 6 0,55 5 Veuf(ve) 0,00 Séparé(e) Tot. 11 1,00

421 Les distributions en classes
Variables qualitatives et distribution (p. 10) Peut-on calculer des effectifs ? Oui effectifs cumulés ? Non fréquences ? Oui fréquences cumulées ? Non Exemple en page 10 Sans objet p/k xp np Nk fp Fk 1 Cohabitant(e) 2 SO 0,18 Marié(e) 3 Divorcé(e) 0,09 4 Célibataire 6 0,55 5 Veuf(ve) 0,00 Séparé(e) Tot. Sans objet 11 1,00

422 Les distributions en classes
Variables qualitatives et distribution Peut-on constituer des « classes » ou regroupements de valeurs ? Oui : en union <> pas en union p/k xp np Nk fp Fk 1 Cohabitant(e) 2 SO 0,18 Marié(e) 3 Divorcé(e) 0,09 4 Célibataire 6 0,55 5 Veuf(ve) 0,00 Séparé(e) Tot. Sans objet 11 1,00 p/k xp np Nk fp Fk 1 En union 4 SO 0,36 2 Pas en union 7 0,64 Tot. Sans objet 11 1,00

423 Les distributions en classes
Variables qualitatives et distribution Peut-on constituer des « classes » ou regroupements de valeurs ? Oui : en union <> pas en union p/k xp np Nk fp Fk 1 Cohabitant(e) 2 SO 0,18 Marié(e) 3 Divorcé(e) 0,09 4 Célibataire 6 0,55 5 Veuf(ve) 0,00 Séparé(e) Tot. Sans objet 11 1,00 p/k xp np Nk fp Fk 1 En union 4 SO 0,36 2 Pas en union 7 0,64 Tot. Sans objet 11 1,00

424 Les distributions en classes
Variables qualitatives et distribution Peut-on constituer des « classes » ou regroupements de valeurs ? Oui : en union <> pas en union p/k xp np Nk fp Fk 1 Cohabitant(e) 2 SO 0,18 Marié(e) 3 Divorcé(e) 0,09 4 Célibataire 6 0,55 5 Veuf(ve) 0,00 Séparé(e) Tot. Sans objet 11 1,00 p/k xp np Nk fp Fk 1 En union 4 SO 0,36 2 Pas en union 7 0,64 Tot. Sans objet 11 1,00 Remarque : impossible d’ordonner au sens mathématique  « classes »

425 Les distributions en classes
Commentaires finals (ou finaux : au choix) Vocabulaire : une généreuse pagaille effectifs absolus ou relatifs fréquences absolues ou relatives dans ce cours : effectif = nombre absolu fréquence = nombre relatif (%) ailleurs ou autre prof ? Exercices : exercez-vous ! écrire les calculs (au moins quelques uns) en extension avec les chiffres en extension avec les symboles avec les formules condensées si problème avec les %, les arrondis, la calculette…

426 Tableau à double entrée
Tableau de contingence ou … pp

427 Tableau à double entrée
En guise d’introduction Exemple : le naufrage du Titanic La question : influence de la classe sur la survie des passagers les % de sauvés sont-ils différents selon la classe ? Données : Source : Masuy-Stroobants G. & Costa R. (2013), Analyser les données en sciences sociales, pp Pour une analyse plus complète, cf. cette référence. Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

428 Tableau à double entrée
En guise d’introduction Exemple : le naufrage du Titanic La question : influence de la classe sur la survie des passagers les % de sauvés sont-ils différents selon la classe ? Données : Source : Masuy-Stroobants G. & Costa R. (2013), Analyser les données en sciences sociales, pp Pour une analyse plus complète, cf. cette référence. Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

429 Tableau à double entrée
En guise d’introduction Exemple : le naufrage du Titanic La question : influence de la classe sur la survie des passagers les % de sauvés sont-ils différents selon la classe ? Données : Source : Masuy-Stroobants G. & Costa R. (2013), Analyser les données en sciences sociales, pp Pour une analyse plus complète, cf. cette référence. Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308 Après la théorie, on reviendra à cet exemple ! Maintenant l’exemple simple du syllabus.

430 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : au total, 6 célibataires dans le tableau 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’un critique à propos de la cohérence… Exercice d’application Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

431 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : au total, 6 célibataires dans le tableau 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’un critique à propos de la cohérence… Exercice d’application Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

432 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : au total, 6 célibataires dans le tableau 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’un critique à propos de la cohérence… Exercice d’application Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

433 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : dans le tableau, 6 célibataires 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’un critique à propos de la cohérence… Exercice d’application Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

434 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : dans le tableau, 6 célibataires 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’un critique à propos de la cohérence… Exercice d’application Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

435 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : dans le tableau, 6 célibataires 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’un critique à propos de la cohérence… Exercice d’application Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

436 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : dans le tableau, 6 célibataires 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’un critique à propos de la cohérence… Exercice d’application Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

437 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : dans le tableau, 6 célibataires 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’un critique à propos de la cohérence… Exercice d’application Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

438 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : dans le tableau, 6 célibataires 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’une critique à propos de la cohérence… Exercice d’application Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

439 Tableau à double entrée
Tableau 1.8 (p. 12) Constitué sur la base du tableau 1.1 Interprétation de quelques données : 4 : parmi les 11, 4 sont des femmes célibataires 6 : dans le tableau, 6 célibataires 7 : au total, 7 femmes dans le tableau Pour classer un « i » que faut-il connaitre à son sujet ? Quoi en bout de ligne ou de colonne ? Données individuelles ou groupées ? Distribution ou pas ? Possibilité d’une critique à propos de la cohérence… Exercice d’application (Exercice 1.a) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

440 Tableau à double entrée
Exercice 1, corrigé données Belge UE hors Belgique Autre Total Homme 69.466 68.811 Femme 70.378 63.691

441 Tableau à double entrée
Tableau 1.8 (p. 12) Originalité : classement selon 2 variables (et plus une seule) Dans le tableau 1.8, classement selon : le sexe (indice « p » variant de 1 à 2, avec P = 2) Homme = 1 Femme = 2 Le statut matrimonial (indice « q » variant de 1 à 4, avec Q = 4) Pas toujours 2 variables qualitatives (cf. syllabus) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 • célibataire = 1 • marié(e) coutume = 2 • marié(e) état civil= 3 • divorcé(e) = 4

442 Tableau à double entrée
Tableau 1.8 (p. 12) Originalité : classement selon 2 variables (et plus une seule) Dans le tableau 1.8, classement selon : le sexe (indice « p » variant de 1 à 2, avec P = 2) Homme = 1 Femme = 2 Le statut matrimonial (indice « q » variant de 1 à 4, avec Q = 4) Pas toujours 2 variables qualitatives (cf. syllabus) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 • célibataire = 1 • marié(e) coutume = 2 • marié(e) état civil= 3 • divorcé(e) = 4

443 Tableau à double entrée
Tableau 1.8 (p. 12) Originalité : classement selon 2 variables (et plus une seule) Dans le tableau 1.8, classement selon : le sexe (indice « p » variant de 1 à 2, avec P = 2) homme = 1 femme = 2 Le statut matrimonial (indice « q » variant de 1 à 4, avec Q = 4) Pas toujours 2 variables qualitatives (cf. syllabus) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 • célibataire = 1 • marié(e) coutume = 2 • marié(e) état civil= 3 • divorcé(e) = 4

444 Tableau à double entrée
Tableau 1.8 (p. 12) Originalité : classement selon 2 variables (et plus une seule) Dans le tableau 1.8, classement selon : le sexe (indice « p » variant de 1 à 2, avec P = 2) homme = 1 femme = 2 le statut matrimonial (indice « q » variant de 1 à 4, avec Q = 4) Pas toujours 2 variables qualitatives (cf. syllabus) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 • célibataire = 1 • cohabitant(e) = 2 • marié(e) = 3 • divorcé(e) = 4

445 Tableau à double entrée
Tableau 1.8 (p. 12) Originalité : classement selon 2 variables (et plus une seule) Dans le tableau 1.8, classement selon : le sexe (indice « p » variant de 1 à 2, avec P = 2) homme = 1 femme = 2 le statut matrimonial (indice « q » variant de 1 à 4, avec Q = 4) Pas toujours 2 variables qualitatives (cf. syllabus) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 • célibataire = 1 • cohabitant(e) = 2 • marié(e) = 3 • divorcé(e) = 4

446 Tableau à double entrée
Tableau 1.8 (p. 12) Notation des effectifs (absolus) : n14 lire : « n un quatre » (et pas « n quatorze ») = l’effectif des hommes (p = 1) divorcés ( q = 4) vaut 0 (soit un nombre comme un autre…) npq = l’effectif de sexe p et de statut matrimonial q = un des 8 effectifs dans les cases internes du tableau Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

447 Tableau à double entrée
Tableau 1.8 (p. 12) Notation des effectifs (absolus) : n14 lire : « n un quatre » (et pas « n quatorze ») = l’effectif des hommes (p = 1) divorcés ( q = 4) vaut 0 (soit un nombre comme un autre…) npq = l’effectif de sexe p et de statut matrimonial q = un des 8 effectifs dans les cases internes du tableau Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

448 Tableau à double entrée
Tableau 1.8 (p. 12) Notation des effectifs (absolus) : n14 lire : « n un quatre » (et pas « n quatorze ») = l’effectif des hommes (p = 1) divorcés ( q = 4) vaut 0 (soit un nombre comme un autre…) npq = l’effectif de sexe p et de statut matrimonial q = un des 8 effectifs dans les cases internes du tableau Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

449 Tableau à double entrée
Tableau 1.8 (p. 12) Notation des effectifs (absolus) : n14 lire : « n un quatre » (et pas « n quatorze ») = l’effectif des hommes (p = 1) divorcés ( q = 4) vaut 0 (soit un nombre comme un autre…) npq = l’effectif de sexe p et de statut matrimonial q = un des 8 effectifs dans les cases internes du tableau Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

450 Tableau à double entrée
Tableau 1.8 (p. 12) Notation des effectifs (absolus) : n14 lire : « n un quatre » (et pas « n quatorze ») = l’effectif des hommes (p = 1) divorcés ( q = 4) vaut 0 (soit un nombre comme un autre…) npq = l’effectif de sexe p et de statut matrimonial q = un des 8 effectifs dans les cases internes du tableau Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

451 Tableau à double entrée
Tableau 1.8 (p. 12) Notation des effectifs (absolus) : n14 lire : « n un quatre » (et pas « n quatorze ») = l’effectif des hommes (p = 1) divorcés ( q = 4) vaut 0 npq = l’effectif de sexe p et de statut matrimonial q = un des 8 effectifs dans les cases internes du tableau Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

452 Tableau à double entrée
Tableau 1.8 (p. 12) Notation des effectifs (absolus) : n14 lire : « n un quatre » (et pas « n quatorze ») = l’effectif des hommes (p = 1) divorcés ( q = 4) vaut 0 (soit un nombre comme un autre…) npq = l’effectif de sexe p et de statut matrimonial q = un des 8 effectifs dans les cases internes du tableau Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

453 Tableau à double entrée
Tableau 1.8 (p. 12) Notation des effectifs (absolus) : n14 lire : « n un quatre » (et pas « n quatorze ») = l’effectif des hommes (p = 1) divorcés ( q = 4) vaut 0 (soit un nombre comme un autre…) npq = l’effectif de sexe p et de statut matrimonial q = un des 8 effectifs des cases internes du tableau Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

454 Tableau à double entrée
Effectifs absolus Notation symbolique Contenu des marges (ligne et colonne « Total ») Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Marié(e) cout (q = 2) Marié(e) EC (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 Femmes (p = 2) n21 n22 n23 n24

455 Tableau à double entrée
Effectifs absolus Notation symbolique Contenu des marges (ligne et colonne « Total ») Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Marié(e) cout (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 Femmes (p = 2) n21 n22 n23 n24

456 Tableau à double entrée
Effectifs absolus Notation symbolique Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 Femme (p = 2) n21 n22 n23 n24

457 Tableau à double entrée
Effectifs absolus Notation symbolique Effectif de la ligne 2 et de la colonne 3 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 Femme (p = 2) n21 n22 n23 n24

458 Tableau à double entrée
Effectifs absolus Notation symbolique Contenu des marges : ligne « Total » et colonne « Total » Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 Femme (p = 2) n21 n22 n23 n24

459 Tableau à double entrée
Effectifs absolus Notation symbolique Contenu des marges : ligne « Total » et colonne « Total » Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 Femme (p = 2) n21 n22 n23 n24

460 Tableau à double entrée
Contenu des marges somme de la 2e ligne le total des femmes, tous statuts matrimoniaux confondus généralisation pour le sexe p : Cohabi. (q=2)

461 Tableau à double entrée
Contenu des marges somme de la 2e ligne le total des femmes, tous statuts matrimoniaux confondus généralisation pour le sexe p : Cohabi. (q=2)

462 Tableau à double entrée
Contenu des marges somme de la 2e ligne le total des femmes, tous statuts matrimoniaux confondus généralisation pour le sexe p : Cohabi. (q=2)

463 Tableau à double entrée
Contenu des marges somme de la 2e ligne le total des femmes, tous statuts matrimoniaux confondus généralisation pour le sexe p : Cohabi. (q=2)

464 Tableau à double entrée
Contenu des marges somme de la 2e ligne le total des femmes, tous statuts matrimoniaux confondus généralisation pour le sexe p : Cohabi. (q=2)

465 Tableau à double entrée
Contenu des marges somme de la 2e ligne le total des femmes, tous statuts matrimoniaux confondus généralisation pour le sexe p : Cohabi. (q=2)

466 Tableau à double entrée
Contenu des marges somme de la 2e ligne le total des femmes, tous statuts matrimoniaux confondus généralisation pour le sexe p : Cohabi. (q=2)

467 Tableau à double entrée
Contenu des marges somme de la 2e ligne somme de la 1re colonne le total des célibataires, tous sexes confondus généralisation pour le statut matrimonial q :

468 Tableau à double entrée
Contenu des marges somme de la 2e ligne somme de la 1re colonne le total des célibataires, tous sexes confondus généralisation pour le statut matrimonial q : Cohabi. (q=2)

469 Tableau à double entrée
Contenu des marges somme de la 2e ligne somme de la 1re colonne le total des célibataires, tous sexes confondus généralisation pour le statut matrimonial q : Cohabi. (q=2)

470 Tableau à double entrée
Contenu des marges somme de la 2e ligne somme de la 1re colonne le total des célibataires, tous sexes confondus généralisation pour le statut matrimonial q : Cohabi. (q=2)

471 Tableau à double entrée
Contenu des marges somme de la 2e ligne somme de la 1re colonne le total des célibataires, tous sexes confondus généralisation pour le statut matrimonial q : Cohabi. (q=2)

472 Tableau à double entrée
Contenu des marges somme de la 2e ligne somme de la 1re colonne le total des célibataires, tous sexes confondus généralisation pour le statut matrimonial q : Cohabi. (q=2)

473 Tableau à double entrée
Les effectifs Notation symbolique Total général : n●● = 11 = somme des 8 cases internes du tableau = somme de la colonne « Total » = somme de la ligne « Total » Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Marié(e) cout (q = 2) Marié(e) EC (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 n1● Femmes (p = 2) n21 n22 n23 n24 n2● n●1 n●2 n●3 n●4 n●●

474 Tableau à double entrée
Les effectifs Notation symbolique Total général : n●● = 11 = somme des 8 cases internes du tableau = somme de la colonne « Total » = somme de la ligne « Total » Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 n1● Femme (p = 2) n21 n22 n23 n24 n2● n●1 n●2 n●3 n●4 n●●

475 Tableau à double entrée
Les effectifs Notation symbolique Total général : n●● = 11 = somme des 8 cases internes du tableau = somme de la colonne « Total » = somme de la ligne « Total » Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 n1● Femme (p = 2) n21 n22 n23 n24 n2● n●1 n●2 n●3 n●4 n●●

476 Tableau à double entrée
Les effectifs Notation symbolique Total général : n●● = 11 = somme des 8 cases internes du tableau = somme de la colonne « Total » = somme de la ligne « Total » = n Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 n1● Femme (p = 2) n21 n22 n23 n24 n2● n●1 n●2 n●3 n●4 n●●

477 Tableau à double entrée
Les effectifs Notation symbolique Total général : n●● = 11 = somme des 8 cases internes du tableau = somme de la colonne « Total » = somme de la ligne « Total » = n Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 n1● Femme (p = 2) n21 n22 n23 n24 n2● n●1 n●2 n●3 n●4 n●●

478 Tableau à double entrée
Les effectifs Notation symbolique Total général : n●● = 11 = somme des 8 cases internes du tableau = somme de la colonne « Total » = somme de la ligne « Total » = n Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) n11 n12 n13 n14 n1● Femme (p = 2) n21 n22 n23 n24 n2● n●1 n●2 n●3 n●4 n●●

479 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) = fréquence pour le sexe p et le statut matrimonial (SM) q = part des observations de sexe p et le SM q = (fois 100 si en %) Idem fréquences déjà vues, MAIS 3 totaux ≠ possibles 8 Cf. tableaux 1.8, 1.9 et 1.10 (en page 11, établis au départ du tableau 1.8) Point le plus important

480 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) = fréquence pour le sexe p et le statut matrimonial (SM) q = part des observations de sexe p et le SM q = (fois 100 si en %) Idem fréquences déjà vues, MAIS 3 totaux ≠ possibles 8 Cf. tableaux 1.8, 1.9 et 1.10 (en page 11, établis au départ du tableau 1.8)

481 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) = fréquence pour le sexe p et le statut matrimonial (SM) q = part des observations de sexe p et le SM q = (fois 100 si en %) Idem fréquences déjà vues, MAIS 3 totaux ≠ possibles 8 Cf. tableaux 1.8, 1.9 et 1.10 (en page 11, établis au départ du tableau 1.8)

482 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) = fréquence pour le sexe p et le statut matrimonial (SM) q = part des observations de sexe p et le SM q = (fois 100 si en %) Idem fréquences déjà vues, MAIS 3 totaux ≠ possibles ! Cf. tableaux 1.8, 1.9 et 1.10 (en page 11, établis au départ du tableau 1.8)

483 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) = fréquence pour le sexe p et le statut matrimonial (SM) q = part des observations de sexe p et le SM q = (fois 100 si en %) Idem fréquences déjà vues, MAIS 3 totaux ≠ possibles ! Cf. tableaux 1.8, 1.9 et 1.10 (en page 11, établis au départ du tableau 1.8)

484 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) = fréquence pour le sexe p et le statut matrimonial (SM) q = part des observations de sexe p et le SM q = (fois 100 si en %) Idem fréquences déjà vues, MAIS 3 totaux ≠ possibles ! Cf. tableaux 1.10, 1.11 et 1.12 (en page 13, établis au départ du tableau 1.8)

485 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.10 (1er total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Exemple : 50,00 Tableau 1.8 Tableau 1.10 (en %) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 50,00 25,00 0,00 100,00 Femme (p = 2) 57,14 14,29 54,55 18,18 9,09

486 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.10 (1er total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Exemple : 50,00 = (2/4)*100, soit l’effectif d’une case divisé par le total de ligne Tableau 1.8 Tableau 1.10 (en %) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 50,00 25,00 0,00 100,00 Femme (p = 2) 57,14 14,29 54,55 18,18 9,09

487 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.10 (1er total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.10 sans état d’âme « Logique de ligne » = le diviseur est en bout de ligne dans tableau 1.8 Exemple : le % de célibataires parmi les femmes Interprétation : 57,14% des femmes sont célibataires Application à l’exercice

488 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.10 (1er total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.10 sans état d’âme « Logique de ligne » = le diviseur est en bout de ligne dans tableau 1.8 Exemple : le % de célibataires parmi les femmes Interprétation : 57,14% des femmes sont célibataires Application à l’exercice

489 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.10 (1er total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.10 sans état d’âme « Logique de ligne » = le diviseur est en bout de ligne dans tableau 1.8 Exemple : le % de célibataires parmi les femmes Interprétation : 57,14% des femmes sont célibataires Application à l’exercice

490 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.10 (1er total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.10 sans état d’âme « Logique de ligne » = le diviseur est en bout de ligne dans tableau 1.8 Exemple : le % de célibataires parmi les femmes Interprétation : 57,14% des femmes sont célibataires Application à l’exercice

491 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.10 (1er total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.10 sans état d’âme « Logique de ligne » = le diviseur est en bout de ligne dans tableau 1.8 Exemple : le % de célibataires parmi les femmes Interprétation : 57,14% des femmes sont célibataires Application à l’exercice Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

492 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.10 (1er total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.10 sans état d’âme « Logique de ligne » = le diviseur est en bout de ligne dans tableau 1.8 Exemple : le % de célibataires parmi les femmes Interprétation : 57,14% des femmes sont célibataires Application à l’exercice

493 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.10 (1er total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.10 sans état d’âme « Logique de ligne » = le diviseur est en bout de ligne dans tableau 1.8 Exemple : le % de célibataires parmi les femmes Interprétation : 57,14% des femmes sont célibataires Application à l’exercice 1.b (en commençant par les 3 calculs sous le tableau) Résultats en % avec une décimale

494 Tableau à double entrée
Exercice 1, corrigé données % en ligne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 69,6% 15,3% 15,1% 100,0% Femmes 73,2% 14,1% 12,8% 71,5% 14,7% 13,9% % de Belges parmi les hommes : / = 0,696 ou 69,6 % % de la catégorie « autre » parmi les femmes : / = 12,8 % % de Belges dans le total : / = 71,5 % Même cellule dans le tableau pour le numérateur et le résultat

495 Tableau à double entrée
Exercice 1, corrigé données % en ligne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 69,6% 15,3% 15,1% 100,0% Femmes 73,2% 14,1% 12,8% 71,5% 14,7% 13,9% % de Belges parmi les hommes : / = 0,696 ou 69,6 % % de la catégorie « autre » parmi les femmes : / = 12,8 % % de Belges dans le total : / = 71,5 %

496 Tableau à double entrée
Exercice 1, corrigé données % en ligne facile à identifier : dans la colonne « Total », partout 100% Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 69,6% 15,3% 15,1% 100,0% Femmes 73,2% 14,1% 12,8% 71,5% 14,7% 13,9%

497 Tableau à double entrée
Exercice 1, corrigé données % en ligne facile à identifier : dans la colonne « Total », partout 100%  logique de ligne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 69,6% 15,3% 15,1% 100,0% Femmes 73,2% 14,1% 12,8% 71,5% 14,7% 13,9%

498 Tableau à double entrée
Exercice 1, corrigé données % en ligne facile à identifier : dans la colonne « Total », partout 100%  logique de ligne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 69,6% 15,3% 15,1% 100,0% Femmes 73,2% 14,1% 12,8% 71,5% 14,7% 13,9%

499 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Exemple : 33,33 = Tableau 1.8 Tableau 1.10 (en %) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 33,33 50,00 0,00 36,36 Femme (p = 2) 66,67 100,00 63,64

500 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Exemple : 33,33 = (2/6)*100, effectif d’une case divisé par le total de la colonne Tableau 1.8 Tableau 1.10 (en %) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 33,33 50,00 0,00 36,36 Femme (p = 2) 66,67 100,00 63,64

501 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.11 sans état d’âme « Logique de colonne » = le diviseur est en bas de colonne du tableau 1.8 Exemple : le % de femmes parmi les célibataires Interprétation : 66,67% des célibataires sont des femmes À comparer à « 57,14% des femmes sont célibataires » ! Application à l’exercice

502 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.11 sans état d’âme « Logique de colonne » = le diviseur est en bas de colonne du tableau 1.8 Exemple : le % de femmes parmi les célibataires Interprétation : 66,67% des célibataires sont des femmes À comparer à « 57,14% des femmes sont célibataires » ! Application à l’exercice

503 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.11 sans état d’âme « Logique de colonne » = le diviseur est en bas de colonne du tableau 1.8 Exemple : le % de femmes parmi les célibataires Interprétation : 66,67% des célibataires sont des femmes À comparer à « 57,14% des femmes sont célibataires » ! Application à l’exercice

504 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.11 sans état d’âme « Logique de colonne » = le diviseur est en bas de colonne du tableau 1.8 Exemple : le % de femmes parmi les célibataires Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11

505 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.11 sans état d’âme « Logique de colonne » = le diviseur est en bas de colonne du tableau 1.8 Exemple : le % de femmes parmi les célibataires Interprétation : 66,67% des célibataires sont des femmes À comparer à « 57,14% des femmes sont célibataires » ! Application à l’exercice

506 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.11 sans état d’âme « Logique de colonne » = le diviseur est en bas de colonne du tableau 1.8 Exemple : le % de femmes parmi les célibataires Interprétation : 66,67% des célibataires sont des femmes À comparer à : 57,14% des femmes sont célibataires le % de célibataires parmi les femmes Application à l’exercice

507 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.11 sans état d’âme « Logique de colonne » = le diviseur est en bas de colonne du tableau 1.8 Exemple : le % de femmes parmi les célibataires Interprétation : 66,67% des célibataires sont des femmes À comparer à : 57,14% des femmes sont célibataires le % de célibataires parmi les femmes Application à l’exercice

508 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.11 (2e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.11 sans état d’âme « Logique de colonne » = le diviseur est en bas de colonne du tableau 1.8 Exemple : le % de femmes parmi les célibataires Interprétation : 66,67% des célibataires sont des femmes À comparer à : 57,14% des femmes sont célibataires le % de célibataires parmi les femmes Application à l’exercice (en commençant par les 3 calculs sous le tableau)

509 Tableau à double entrée
Exercice 1, corrigé données % en colonne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 46,4% 49,7% 51,9% 47,7% Femmes 53,6% 50,3% 48,1% 52,3% 100,0% % d’hommes parmi les Belges : / = 0,464 ou 46,4 % % de femmes dans la catégorie « autre » : / = 48,1 % % d’hommes dans le total : / = 47,7 %

510 Tableau à double entrée
Exercice 1, corrigé données % en colonne facile à identifier : sur ligne « Total », partout 100% Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 46,4% 49,7% 51,9% 47,7% Femmes 53,6% 50,3% 48,1% 52,3% 100,0%

511 Tableau à double entrée
Exercice 1, corrigé données % en colonne facile à identifier : sur ligne « Total », partout 100%  logique de colonne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 46,4% 49,7% 51,9% 47,7% Femmes 53,6% 50,3% 48,1% 52,3% 100,0%

512 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.12 (3e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Exemple : 18,18 = (2/11)*100, effectif d’une case divisé par le total de la colonne Tableau 1.8 Tableau 1.10 (en %) Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 2 1 4 Femme (p = 2) 7 6 11 Statut matrimonial Sexe Célibataire (q = 1) Cohabi. (q = 2) Marié(e) (q = 3) Divorcé(e) (q = 4) Total Homme (p = 1) 18,18 9,09 0,00 36,36 Femme (p = 2) 63,64 54,55 100,00

513 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.12 (3e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.12 sans état d’âme « Logique par rapport au total » = le diviseur est le total (général) du tableau 1.8 Exemple : le % de femmes célibataires dans le total (général) Interprétation : 36,36% du total sont des femmes célibataires Application à l’exercice

514 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.12 (3e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.12 sans état d’âme « Logique par rapport au total » = le diviseur est le total (général) du tableau 1.8 Exemple : le % de femmes célibataires dans le total (général) Interprétation : 36,36% du total sont des femmes célibataires Application à l’exercice

515 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.12 (3e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.12 sans état d’âme « Logique par rapport au total » = le diviseur est le total (général) du tableau 1.8 Exemple : le % de femmes célibataires dans le total (général) Interprétation : 36,36% du total sont des femmes célibataires Application à l’exercice

516 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.12 (3e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.12 sans état d’âme « Logique par rapport au total » = le diviseur est le total (général) du tableau 1.8 Exemple : le % de femmes célibataires dans le total (général) Interprétation : 36,36% du total sont des femmes célibataires Application à l’exercice

517 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) Tableau 1.12 (3e total possible) Comment les % sont-ils calculés au départ du tableau 1.8 ? Applicable à TOUTES les cellules de 1.12 sans état d’âme « Logique par rapport au total » = le diviseur est le total (général) du tableau 1.8 Exemple : le % de femmes célibataires dans le total (général) Interprétation : 36,36% du total sont des femmes célibataires Application à l’exercice 1.d (en commençant par les 2 calculs sous le tableau)

518 Tableau à double entrée
Exercice 1, corrigé données % par rapport au total Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 33,2% 7,3% 7,2% 47,7% Femmes 38,3% 7,4% 6,7% 52,3% 71,5% 14,7% 13,9% 100,0% % d’hommes belges dans le total  : / = 0,332 ou 33,2 % % de femmes de la catégorie « autre » dans le total : / = 6,7 %

519 Tableau à double entrée
Exercice 1, corrigé données % par rapport au total facile à identifier : 100 % uniquement dans la case du total général Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 33,2% 7,3% 7,2% 47,7% Femmes 38,3% 7,4% 6,7% 52,3% 71,5% 14,7% 13,9% 100,0%

520 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) 3 types différents de fréquences selon le diviseur Interprétation ≠  autre type de renseignement ! À ne pas confondre ! À choisir en fonction de la question posée !

521 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) 3 types différents de fréquences selon le diviseur Interprétation ≠  autre type de renseignement ! À ne pas confondre ! À choisir en fonction de la question posée !

522 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) 3 types différents de fréquences selon le diviseur Interprétation ≠  autre type de renseignement ! À ne pas confondre ! À choisir en fonction de la question posée !

523 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) 3 types différents de fréquences selon le diviseur parmi les femmes, 57 % de célibataires parmi les célibataires, 67 % de femmes dans le total, 36 % de femmes célibataires Interprétations différentes  autre type de renseignement ! À ne pas confondre ! À choisir en fonction de la question posée !

524 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) 3 types différents de fréquences selon le diviseur parmi les femmes, 57 % de célibataires parmi les célibataires, 67 % de femmes dans le total, 36 % de femmes célibataires Interprétations différentes  autre type de renseignement ! À ne pas confondre ! À choisir en fonction de la question posée !

525 Tableau à double entrée
Fréquences (relatives = part, proportion, %...) 3 types différents de fréquences selon le diviseur parmi les femmes, 57 % de célibataires parmi les célibataires, 67 % de femmes dans le total, 36 % de femmes célibataires Interprétations différentes  autre type de renseignement ! À ne pas confondre ! À choisir en fonction de la question posée !

526 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés EC parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés EC parmi les hommes (expression « habituelle ») le % d’hommes mariés EC par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des ho.» = 4 identifier le numérateur : le % de mariés EC parmi les hommes

527 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés EC parmi les hommes (expression « habituelle ») le % d’hommes mariés EC par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des ho.» = 4 identifier le numérateur : le % de mariés EC parmi les hommes

528 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés EC parmi les hommes (expression « habituelle ») le % d’hommes mariés EC par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des ho.» = 4 identifier le numérateur : le % de mariés EC parmi les hommes

529 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés EC parmi les hommes (expression « habituelle ») le % d’hommes mariés EC par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des ho.» = 4 identifier le numérateur : le % de mariés EC parmi les hommes

530 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés parmi les hommes (expression « habituelle ») le % d’hommes mariés EC par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des ho.» = 4 identifier le numérateur : le % de mariés EC parmi les hommes

531 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés parmi les hommes (expression « habituelle ») le % d’hommes mariés par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des ho.» = 4 identifier le numérateur : Attention : ° la méthode s’applique à l’expression courte citée ; ° d’autres expressions, en apparence proches, peuvent supposer un autre calcul ; ° dans ce cours/examen, toujours le même type d’expression ! ° et donc la méthode est applicable ! le % de mariés EC parmi les hommes

532 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés parmi les hommes (expression « habituelle ») le % d’hommes mariés par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des ho.» = 4 identifier le numérateur : le % de mariés EC parmi les hommes

533 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés parmi les hommes (expression « habituelle ») le % d’hommes mariés par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des ho.» = 4 identifier le numérateur : le % de mariés EC parmi les hommes

534 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés parmi les hommes (expression « habituelle ») le % d’hommes mariés par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des hommes » = 4 identifier le numérateur : le % de mariés parmi les hommes « Parmi les hommes »  calcul dans la ligne des hommes

535 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire, soit dans l’exemple : le % de mariés parmi les hommes (expression « habituelle ») le % d’hommes mariés par rapport au total des hommes (expression inhabituelle) identifier le dénominateur : le mot après « parmi » soit « les hommes », sous-entendu « le total des hommes » = 4 identifier le numérateur : cf. écran suivant le % de mariés parmi les hommes

536 Tableau à double entrée
Choix du type de fréquence selon la question posée identifier le numérateur : le % de mariés parmi les hommes (expression « habituelle ») les mots avant et après « parmi » soit les « mariés hommes » (ou « hommes mariés ») = 1 le % de mariés parmi les hommes

537 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire : le % de mariés parmi les hommes (HO) identifier le dénominateur : les hommes (le total des HO) = 4 identifier le numérateur : les hommes mariés = 1 procéder à la division (ou choisir le bon tableau) : même procédure pour le 2e % : comparer les 2 % et conclure : « le % de mariés EC est plus important parmi les HO (25%) que parmi les FE (14%) » ce qui est potentiellement une information intéressante

538 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire : le % de mariés parmi les hommes (HO) identifier le dénominateur : les hommes (le total des HO) = 4 identifier le numérateur : les hommes mariés = 1 procéder à la division (ou choisir le bon tableau) : même procédure pour le 2e % : comparer les 2 % et conclure : « le % de mariés EC est plus important parmi les HO (25%) que parmi les FE (14%) » ce qui est potentiellement une information intéressante

539 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire : le % de mariés parmi les hommes (HO) identifier le dénominateur : les hommes (le total des HO) = 4 identifier le numérateur : les hommes mariés = 1 procéder à la division (ou choisir le bon tableau) : même procédure pour le 2e % : comparer les 2 % et conclure : « le % de mariés EC est plus important parmi les HO (25%) que parmi les FE (14%) » ce qui est potentiellement une information intéressante

540 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire : le % de mariés parmi les hommes (HO) identifier le dénominateur : les hommes (le total des HO) = 4 identifier le numérateur : les hommes mariés = 1 procéder à la division (ou choisir le bon tableau) : même procédure pour le 2e % : comparer les 2 % et conclure / interpréter : « le % de mariés est plus important parmi les HO (25%) que parmi les FE (14%) » ce qui est potentiellement une information intéressante

541 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire : le % de mariés parmi les hommes (HO) identifier le dénominateur : les hommes (le total des HO) = 4 identifier le numérateur : les hommes mariés = 1 procéder à la division (ou choisir le bon tableau) : même procédure pour le 2e % : comparer les 2 % et conclure / interpréter : « le % de mariés est plus important parmi les HO (25%) que parmi les FE (14%) » ce qui est potentiellement une information intéressante

542 Tableau à double entrée
Choix du type de fréquence selon la question posée Soit à comparer le % de mariés parmi les hommes et les femmes Si difficultés, y aller pas à pas : identifier le 1er % nécessaire : le % de mariés parmi les hommes (HO) identifier le dénominateur : les hommes (le total des HO) = 4 identifier le numérateur : les hommes mariés = 1 procéder à la division (ou choisir le bon tableau) : même procédure pour le 2e % : comparer les 2 % et conclure / interpréter : « le % de mariés est plus important parmi les HO (25%) que parmi les FE (14%) » ce qui est potentiellement une information intéressante Dans le commentaire, ne pas hésiter à citer des résultats qui prouvent ce qui est dit !

543 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

544 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

545 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

546 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

547 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

548 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

549 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

550 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

551 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

552 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

553 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Si hésitation, tout calculer et regarder !

554 Tableau à double entrée
Choix en cas de questions directes : soit à comparer le % de célibataires parmi les hommes et les femmes ? d’hommes et de femmes parmi les célibataires ? d’hommes parmi les célibataires et les divorcés ? d’HO célibataires et de FE divorcées dans la population totale ? Choix en cas de questions moins directes : parmi les célibataires, quel sexe domine ? le déséquilibre HO/FE est-il le même parmi les célib. et les divorcés? le célibat touche-t-il proportionnellement plus les HO que les FE ? Éventuellement 2 façons de comprendre la dernière question : le célibat touche-t-il une plus grande % d’individus parmi les HO (HO = 100%) que parmi les FE (FE = 100%) ? les célibataires comptent-ils plus d’HO. que de FE. (célibataires = 100%) ? Correction détaillée dans le syllabus (exercice 1.9, p. 15)

555 Tableau à double entrée
Exercices prioritaires (avec correction au cours) : Exercice 1 (si pas déjà fait complètement) Exercice 4 (question d’un examen d’une année antérieure) Exercice 5 (idem + une apparence de contradiction) À faire, mais sans correction au cours (cf. site) : Exercice 2 Exercice 3 Pour les plus rapides : syllabus, exercice 1.9 & 1.10, p. 15 Pour tous, au travail !

556 Tableau à double entrée
Exercice 1, corrigé données Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691

557 Tableau à double entrée
Exercice 1, corrigé données % en ligne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691

558 Tableau à double entrée
Exercice 1, corrigé données % en ligne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 69,6% 15,3% 15,1% 100,0% Femmes 73,2% 14,1% 12,8% 71,5% 14,7% 13,9% % de Belges parmi les hommes : / = 0,696 ou 69,6 % % de la catégorie « autre » parmi les femmes : / = 12,8 % % de Belges dans le total : / = 71,5 %

559 Tableau à double entrée
Exercice 1, corrigé données % en ligne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 69,6% 15,3% 15,1% 100,0% Femmes 73,2% 14,1% 12,8% 71,5% 14,7% 13,9% % de Belges parmi les hommes : / = 0,696 ou 69,6 % % de la catégorie « autre » parmi les femmes : / = 12,8 % % de Belges dans le total : / = 71,5 % « Parmi les hommes »  calcul dans la ligne des hommes

560 Tableau à double entrée
Exercice 1, corrigé données % en ligne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 69,6% 15,3% 15,1% 100,0% Femmes 73,2% 14,1% 12,8% 71,5% 14,7% 13,9% % de Belges parmi les hommes : / = 0,696 ou 69,6 % % de la catégorie « autre » parmi les femmes : / = 12,8 % % de Belges dans le total : / = 71,5 %

561 Tableau à double entrée
Exercice 1, corrigé données % en ligne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 69,6% 15,3% 15,1% 100,0% Femmes 73,2% 14,1% 12,8% 71,5% 14,7% 13,9% MAIS : 73,2% ,1% ,8% = 100,1% effet d’arrondi(s) à mon avis, forcer le 100%, signaler que c’est  de 100% par effet d’arrondi(s)

562 Tableau à double entrée
Exercice 1, corrigé données % en colonne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 46,4% 49,7% 51,9% 47,7% Femmes 53,6% 50,3% 48,1% 52,3% 100,0% % d’hommes parmi les Belges : / = 0,464 ou 46,4 % % de femmes dans la catégorie « autre » : / = 48,1 % % d’hommes dans le total : / = 47,7 %

563 Tableau à double entrée
Exercice 1, corrigé données % en colonne Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 46,4% 49,7% 51,9% 47,7% Femmes 53,6% 50,3% 48,1% 52,3% 100,0% % d’hommes parmi les Belges : / = 0,464 ou 46,4 % % de femmes dans la catégorie « autre » : / = 48,1 % % d’hommes dans le total : / = 47,7 %

564 Tableau à double entrée
Exercice 1, corrigé données % par rapport au total Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 33,2% 7,3% 7,2% 47,7% Femmes 38,3% 7,4% 6,7% 52,3% 71,5% 14,7% 13,9% 100,0% % d’hommes belges dans le total  : / = 0,332 ou 33,2 % % de femmes de la catégorie « autre » dans le total : / = 6,7 % « Dans le total »  calcul par rapport au total général

565 Tableau à double entrée
Exercice 1, corrigé données % par rapport au total Belge UE hors Belgique Autre Total Hommes 69.466 68.811 Femmes 70.378 63.691 Belge UE hors Belgique Autre Total Hommes 33,2% 7,3% 7,2% 47,7% Femmes 38,3% 7,4% 6,7% 52,3% 71,5% 14,7% 13,9% 100,0% % d’hommes belges dans le total  : / = 0,332 ou 33,2 % % de femmes de la catégorie « autre » dans le total : / = 6,7 %

566 Tableau à double entrée
Exercices 2 et 3, corrigés sur le site

567 Tableau à double entrée
Exercice 4, corrigé Rappel des données : Répartition des 25-<30 ans selon le sexe et le statut matrimonial Pays A Célibataires Non-célibataires Total Pays B Hommes 6.034 5.723 11.757 6.987 11.567 18.554 Femmes 3.056 8.743 11.799 3.124 11.867 9.090 14.466 23.556 10.111 20.310 30.421 Pays C Pays D 12.876 5.923 18.799 6.441 7.234 13.675 16.000 14.666 30.666 9.565 15.977 25.542

568 Tableau à double entrée
Exercice 4, corrigé Tableaux des fréquences % en ligne % en colonne % par rapport au total

569 Tableau à double entrée
Exercice 4, corrigé Tableaux des fréquences % en ligne % en colonne % par rapport au total

570 Tableau à double entrée
Exercice 4, corrigé Tableaux des fréquences % en ligne % en colonne % par rapport au total

571 Tableau à double entrée
Exercice 4, corrigé Tableaux des fréquences C1 : les hommes représentent plus de la moitié du total

572 Tableau à double entrée
Exercice 4, corrigé Tableaux des fréquences C2 : la % d’hommes parmi les non-célibataires est (strictement) > 40,36%

573 Tableau à double entrée
Exercice 4, corrigé Tableaux des fréquences C3 : la % de célibataires parmi les hommes est (strictement) > 37,70%

574 Tableau à double entrée
Exercice 4, corrigé Tableaux des fréquences Conclusion : les pays C et D respectent les 3 critères

575 Tableau à double entrée
Exercice 4, corrigé Situation de B pour le 3e critère : % de céli. parmi les HO. > 37,70% valeur pour B : 37,66% (en % avec 2 décimales) si arrondi à une décimale : 37,7%  doute ! or aucun doute 37,66 < 37,70 ! si critère avec 2 décimales, les % avec 2 décimales parfois : « 3,66 est quand même fort proche de 3,70 » mais 37,66 < 37,70 donc C3 pas satisfait !

576 Tableau à double entrée
Exercice 4, corrigé Situation de B pour le 3e critère : % de céli. parmi les HO. > 37,70% valeur pour B : 37,66% (en % avec 2 décimales) si arrondi à une décimale : 37,7%  doute ! or aucun doute 37,66 < 37,70 ! si critère avec 2 décimales, les % avec 2 décimales parfois : « 3,66 est quand même fort proche de 3,70 » mais 37,66 < 37,70 donc C3 pas satisfait !

577 Tableau à double entrée
Exercice 4, corrigé Situation de B pour le 3e critère : % de céli. parmi les HO. > 37,70% valeur pour B : 37,66% (en % avec 2 décimales) si arrondi à une décimale : 37,7%  doute ! or aucun doute 37,66 < 37,70 ! si critère avec 2 décimales, les % avec 2 décimales parfois : « 3,66 est quand même fort proche de 3,70 » mais 37,66 < 37,70 donc C3 pas satisfait !

578 Tableau à double entrée
Exercice 4, corrigé Situation de B pour le 3e critère : % de céli. parmi les HO. > 37,70% valeur pour B : 37,66% (en % avec 2 décimales) si arrondi à une décimale : 37,7%  doute : 37,7% et 37,70% ! or aucun doute 37,66 < 37,70 ! si critère avec 2 décimales, les % avec 2 décimales parfois : « 3,66 est quand même fort proche de 3,70 » mais 37,66 < 37,70 donc C3 pas satisfait !

579 Tableau à double entrée
Exercice 4, corrigé Situation de B pour le 3e critère : % de céli. parmi les HO. > 37,70% valeur pour B : 37,66% (en % avec 2 décimales) si arrondi à une décimale : 37,7%  doute : 37,7% et 37,70% ! or, aucun doute : 37,66% < 37,70% ! si critère avec 2 décimales, les % doivent être calculés avec 2 décimales parfois : « 3,66 est quand même fort proche de 3,70 » mais 37,66 < 37,70 donc C3 pas satisfait !

580 Tableau à double entrée
Exercice 4, corrigé Situation de B pour le 3e critère : % de céli. parmi les HO. > 37,70% valeur pour B : 37,66% (en % avec 2 décimales) si arrondi à une décimale : 37,7%  doute : 37,7% et 37,70% ! or, aucun doute : 37,66% < 37,70% ! si critère avec 2 décimales, les % doivent être calculés avec 2 décimales parfois : « 37,66% est quand même fort proche de 37,70% » mais 37,66 < 37,70 donc C3 pas satisfait !

581 Tableau à double entrée
Exercice 4, corrigé Situation de B pour le 3e critère : % de céli. parmi les HO. > 37,70% valeur pour B : 37,66% (en % avec 2 décimales) si arrondi à une décimale : 37,7%  doute : 37,7% et 37,70% ! or, aucun doute : 37,66% < 37,70% ! si critère avec 2 décimales, les % doivent être calculés avec 2 décimales parfois : « 37,66% est quand même fort proche de 37,70% » mais 37,66% < 37,70% donc C3 pas satisfait !

582 Tableau à double entrée
Exercice 4, corrigé A l’économie calcul des % d’ho. célib. dans le total  élimination de A calcul des % d’ho. parmi les célb. pour B, C & D  pas d’élimination calcul des % de célib. parmi les ho. pour B, C & D  élimination de B Conseillé, car moins de calculs Dans la justification, citez des résultats prouvant que vous avez raison Corrigé détaillé sur le site

583 Tableau à double entrée
Exercice 4, corrigé A l’économie calcul des % d’ho. célib. dans le total  élimination de A calcul des % d’ho. parmi les célb. pour B, C & D  pas d’élimination calcul des % de célib. parmi les ho. pour B, C & D  élimination de B Conseillé, car moins de calculs Dans la justification, citez des résultats prouvant que vous avez raison Corrigé détaillé sur le site

584 Tableau à double entrée
Exercice 4, corrigé A l’économie calcul des % d’ho. célib. dans le total  élimination de A calcul des % d’ho. parmi les célib. pour B, C & D  pas d’élimination calcul des % de célib. parmi les ho. pour B, C & D  élimination de B Conseillé, car moins de calculs Dans la justification, citez des résultats prouvant que vous avez raison Corrigé détaillé sur le site

585 Tableau à double entrée
Exercice 4, corrigé A l’économie calcul des % d’ho. célib. dans le total  élimination de A calcul des % d’ho. parmi les célib. pour B, C & D  pas d’élimination calcul des % de célib. parmi les ho. pour B, C & D  élimination de B Conseillé, car moins de calculs Dans la justification, citez des résultats prouvant que vous avez raison Corrigé détaillé sur le site

586 Tableau à double entrée
Exercice 4, corrigé A l’économie calcul des % d’ho. célib. dans le total  élimination de A calcul des % d’ho. parmi les célib. pour B, C & D  pas d’élimination calcul des % de célib. parmi les ho. pour B, C & D  élimination de B restent C & D qui satisfont les 3 critères Conseillé, car moins de calculs Dans la justification, citez des résultats prouvant que vous avez raison Corrigé détaillé sur le site

587 Tableau à double entrée
Exercice 4, corrigé A l’économie calcul des % d’ho. célib. dans le total  élimination de A calcul des % d’ho. parmi les célib. pour B, C & D  pas d’élimination calcul des % de célib. parmi les ho. pour B, C & D  élimination de B restent C & D qui satisfont les 3 critères Conseillé, car moins de calculs Dans la justification, citez des résultats prouvant que vous avez raison Corrigé détaillé sur le site

588 Tableau à double entrée
Exercice 4, corrigé A l’économie calcul des % d’ho. célib. dans le total  élimination de A calcul des % d’ho. parmi les célib. pour B, C & D  pas d’élimination calcul des % de célib. parmi les ho. pour B, C & D  élimination de B restent C & D qui satisfont les 3 critères Conseillé, car moins de calculs Dans la justification, citez des résultats prouvant que vous avez raison Corrigé détaillé sur le site

589 Tableau à double entrée
Exercice 4, corrigé A l’économie calcul des % d’ho. célib. dans le total  élimination de A calcul des % d’ho. parmi les célib. pour B, C & D  pas d’élimination calcul des % de célib. parmi les ho. pour B, C & D  élimination de B restent C & D qui satisfont les 3 critères Conseillé, car moins de calculs Dans la justification, citez des résultats prouvant que vous avez raison Corrigé détaillé sur le site

590 Tableau à double entrée
Exercice 5 : le chômage en Belgique selon le niveau de diplôme – Femme 2010 Données : Les questions : que calculer pour voir si le fait d’avoir une diplôme élevé protège du chômage ? déterminer la catégorie de diplôme la plus représentée parmi les chômeurs ? Population En emploi Au chômage Total Bas 66.412 Moyen 77.316 Haut 45.984 Données réelles, même si « anciennes » (2010) !

591 Tableau à double entrée
Exercice 5 : le chômage en Belgique selon le niveau de diplôme – Femme 2010 Données : Les questions : que calculer pour voir si le fait d’avoir une diplôme élevé protège du chômage ? déterminer la catégorie de diplôme la plus représentée parmi les chômeurs ? Population En emploi Au chômage Total Bas 66.412 Moyen 77.316 Haut 45.984

592 Tableau à double entrée
Exercice 5 : le chômage en Belgique selon le niveau de diplôme – Femme 2010 Données : Les questions : que calculer pour voir si le fait d’avoir un diplôme élevé protège du chômage ? déterminer la catégorie de diplôme la plus représentée parmi les chômeurs ? Population En emploi Au chômage Total Bas 66.412 Moyen 77.316 Haut 45.984

593 Tableau à double entrée
Exercice 5 : le chômage en Belgique selon le niveau de diplôme – Femme 2010 Données : Les questions : que calculer pour voir si le fait d’avoir un diplôme élevé protège du chômage ? déterminer la catégorie de diplôme la plus représentée parmi les chômeurs ? Population En emploi Au chômage Total Bas 66.412 Moyen 77.316 Haut 45.984

594 Tableau à double entrée
Exercice 5 : que calculer pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% % en colonne En emploi Au chômage Total Bas 17,3% 35,0% 18,8% Moyen 36,5% 40,8% 36,9% Haut 46,2% 24,2% 44,3% 100,0% % du tot. géné. En emploi Au chômage Total Bas 15,8% 3,0% 18,8% Moyen 33,4% 3,5% 36,9% Haut 42,3% 2,1% 44,3% 91,4% 8,6% 100,0%

595 Tableau à double entrée
Exercice 5 : quel tableau (+ rappel des interprétations) pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% 16,0% de chômeuses parmi les bas niveaux % en colonne En emploi Au chômage Total Bas 17,3% 35,0% 18,8% Moyen 36,5% 40,8% 36,9% Haut 46,2% 24,2% 44,3% 100,0% 35,0% de bas niveaux parmi les chômeuses % du tot. géné. En emploi Au chômage Total Bas 15,8% 3,0% 18,8% Moyen 33,4% 3,5% 36,9% Haut 42,3% 2,1% 44,3% 91,4% 8,6% 100,0% Dans le total, 3,0% de chôm. de bas niveaux

596 Tableau à double entrée
Exercice 5 : quel tableau (+ rappel des interprétations) pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% 16,0% de chômeuses parmi les bas niveaux % en colonne En emploi Au chômage Total Bas 17,3% 35,0% 18,8% Moyen 36,5% 40,8% 36,9% Haut 46,2% 24,2% 44,3% 100,0% 35,0% de bas niveaux parmi les chômeuses % du tot. géné. En emploi Au chômage Total Bas 15,8% 3,0% 18,8% Moyen 33,4% 3,5% 36,9% Haut 42,3% 2,1% 44,3% 91,4% 8,6% 100,0% Dans le total, 3,0% de chôm. de bas niveaux

597 Tableau à double entrée
Exercice 5 : quel tableau pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% 16,0% de chômeuses parmi les bas niveaux % en colonne En emploi Au chômage Total Bas 17,3% 35,0% 18,8% Moyen 36,5% 40,8% 36,9% Haut 46,2% 24,2% 44,3% 100,0% 35,0% de bas niveaux parmi les chômeuses % du tot. géné. En emploi Au chômage Total Bas 15,8% 3,0% 18,8% Moyen 33,4% 3,5% 36,9% Haut 42,3% 2,1% 44,3% 91,4% 8,6% 100,0% Dans le total, 3,0% de chôm. de bas niveaux

598 Tableau à double entrée
Exercice 5 : quel tableau pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% Le taux de chômage est de : ° 16,0 % parmi les individus avec un faible niveau de diplôme ° 9,5 % parmi les individus avec un niveau de diplôme moyen ° 4,7 % parmi les individus avec un niveau de diplôme élevé Conclusion : ° plus le niveau de formation est élevé ° plus le niveau du chômage est faible Conclusion : bien se former protège du chômage

599 Tableau à double entrée
Exercice 5 : quel tableau pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% Le taux de chômage est de : ° 16,0 % parmi les individus avec un faible niveau de diplôme ° 9,5 % parmi les individus avec un niveau de diplôme moyen ° 4,7 % parmi les individus avec un niveau de diplôme élevé Conclusion : ° plus le niveau de formation est élevé ° plus le niveau du chômage est faible Conclusion : bien se former protège du chômage

600 Tableau à double entrée
Exercice 5 : quel tableau pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% Le taux de chômage est de : ° 16,0 % parmi les individus avec un faible niveau de diplôme ° 9,5 % parmi les individus avec un niveau de diplôme moyen ° 4,7 % parmi les individus avec un niveau de diplôme élevé Conclusion : ° plus le niveau de formation est élevé ° plus le niveau du chômage est faible Conclusion : bien se former protège du chômage

601 Tableau à double entrée
Exercice 5 : quel tableau pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% Le taux de chômage est de : ° 16,0 % parmi les individus avec un faible niveau de diplôme ° 9,5 % parmi les individus avec un niveau de diplôme moyen ° 4,7 % parmi les individus avec un niveau de diplôme élevé Et donc : ° plus le niveau de formation est élevé ° plus le niveau du chômage est faible Conclusion : bien se former protège du chômage

602 Tableau à double entrée
Exercice 5 : quel tableau pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% Le taux de chômage est de : ° 16,0 % parmi les individus avec un faible niveau de diplôme ° 9,5 % parmi les individus avec un niveau de diplôme moyen ° 4,7 % parmi les individus avec un niveau de diplôme élevé Et donc : ° plus le niveau de formation est élevé ° plus le niveau du chômage est faible Conclusion : bien se former protège du chômage

603 Tableau à double entrée
Exercice 5 : quel tableau pour voir si le fait d’avoir un diplôme élevé protège du chômage ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% Le taux de chômage est de : ° 16,0 % parmi les individus avec un faible niveau de diplôme ° 9,5 % parmi les individus avec un niveau de diplôme moyen ° 4,7 % parmi les individus avec un niveau de diplôme élevé Avec cet exercice, nous sommes loin d’avoir fait un tour complet de l’analyse du chômage. Et donc : ° plus le niveau de formation est élevé ° plus le niveau du chômage est faible Conclusion : bien se former protège du chômage

604 Tableau à double entrée
Exercice 5 : quel tableau pour déterminer la catégorie de diplôme la plus représentée parmi les chômeurs ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% 16,0% de chômeuses parmi les bas niveaux % en colonne En emploi Au chômage Total Bas 17,3% 35,0% 18,8% Moyen 36,5% 40,8% 36,9% Haut 46,2% 24,2% 44,3% 100,0% 35,0% de bas niveaux parmi les chômeuses % du tot. géné. En emploi Au chômage Total Bas 15,8% 3,0% 18,8% Moyen 33,4% 3,5% 36,9% Haut 42,3% 2,1% 44,3% 91,4% 8,6% 100,0% Dans le total, 3,0% de chôm. de bas niveaux

605 Tableau à double entrée
Exercice 5 : quel tableau pour déterminer la catégorie de diplôme la plus représentée parmi les chômeurs ? % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% 16,0% de chômeuses parmi les bas niveaux % en colonne En emploi Au chômage Total Bas 17,3% 35,0% 18,8% Moyen 36,5% 40,8% 36,9% Haut 46,2% 24,2% 44,3% 100,0% 35,0% de bas niveaux parmi les chômeuses % du tot. géné. En emploi Au chômage Total Bas 15,8% 3,0% 18,8% Moyen 33,4% 3,5% 36,9% Haut 42,3% 2,1% 44,3% 91,4% 8,6% 100,0% Dans le total, 3,0% de chôm. de bas niveaux

606 Tableau à double entrée
Exercice 5 : quel tableau pour déterminer la catégorie de diplôme la plus représentée parmi les chômeurs ?  le niveau moyen correspond au pourcentage le plus fort : 40,8% % en colonne En emploi Au chômage Total Bas 17,3% 35,0% 18,8% Moyen 36,5% 40,8% 36,9% Haut 46,2% 24,2% 44,3% 100,0% À la limite, ICI : ° les nombres absolus suffisent ; ° les % ne sont pas indispensables, mais tellement pratiques !

607 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % plus fort en cas de bas niveau compensé par le fait que plus de femmes de niveau moyen En définitive plus de chômeuses de niveau moyen malgré un % plus faible Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses (1) 0,16* = 0,095* =

608 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % plus fort en cas de bas niveau compensé par le fait que plus de femmes de niveau moyen En définitive plus de chômeuses de niveau moyen malgré un % plus faible Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses (1) 0,16* = 0,095* =

609 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % plus fort en cas de bas niveau compensé par le fait que plus de femmes de niveau moyen En définitive plus de chômeuses de niveau moyen malgré un % plus faible Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses (1) 0,16* = 0,095* =

610 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % plus fort en cas de bas niveau compensé par le fait que plus de femmes de niveau moyen En définitive plus de chômeuses de niveau moyen malgré un % plus faible % en ligne En emploi Au chômage Total Bas 84,0% 16,0% 100,0% Moyen 90,5% 9,5% Haut 95,3% 4,7% 91,4% 8,6% Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses (1) 0,16* = 0,095* =

611 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % plus fort en cas de bas niveau compensé par le fait que plus de femmes de niveau moyen En définitive plus de chômeuses de niveau moyen malgré un % plus faible Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses (1) 0,16* = 0,095* =

612 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % plus fort en cas de bas niveau compensé par le fait que plus de femmes de niveau moyen En définitive plus de chômeuses de niveau moyen malgré un % plus faible % en colonne En emploi Au chômage Total Bas 17,3% 35,0% 18,8% Moyen 36,5% 40,8% 36,9% Haut 46,2% 24,2% 44,3% 100,0% Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses (1) 0,16* = 0,095* =

613 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % plus fort en cas de bas niveau compensé par le fait que plus de femmes de niveau moyen En définitive plus de chômeuses de niveau moyen malgré un % plus faible Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses (1) 0,16* = 0,095* =

614 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % plus fort en cas de bas niveau compensé par le fait que plus de femmes de niveau moyen En définitive plus de chômeuses de niveau moyen malgré un % plus faible Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses 0,16* = 0,095* =

615 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % de chômeuses plus fort en cas de bas niveau compensé par le fait que plus de femmes de niveau moyen En définitive plus de chômeuses de niveau moyen malgré un % plus faible Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses 0,16* = 0,095* =

616 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % de chômeuses plus fort en cas de bas niveau femmes de niveau moyen chômeuses ou pas : effectifs plus élevés En définitive plus de chômeuses de niveau moyen malgré un % plus faible Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses 0,16* = 0,095* =

617 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % de chômeuses plus fort en cas de bas niveau femmes de niveau moyen chômeuses ou pas : effectifs plus élevés en définitive, plus de chômeuses de niveau moyen malgré un % plus faible Conclusion : pas de contradiction ! Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses 0,16* = 0,095* =

618 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % de chômeuses plus fort en cas de bas niveau femmes de niveau moyen chômeuses ou pas : effectifs plus élevés en définitive, plus de chômeuses de niveau moyen malgré un % plus faible Conclusion : pas de contradiction ! Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses 0,16* = 0,095* =

619 Tableau à double entrée
Exercice 5 : une apparente contradiction D’où vient l’apparente contradiction ? Le plus fort risque d’être au chômage est pour le bas niveau de diplôme  cette catégorie devrait être la plus présente parmi les chômeuses Or, la catégorie la plus présente = niveau moyen L’explication : % de chômeuses plus fort en cas de bas niveau femmes de niveau moyen chômeuses ou pas : effectifs plus élevés en définitive, plus de chômeuses de niveau moyen malgré un % plus faible Conclusion : pas de contradiction ! Niveau de formation Bas Moyen % de chômeuses 16,0% 9,5% Effectif de femmes Nombre de chômeuses (1) 0,16* = 0,095* = (1) : attention aux effets d’arrondis (% avec une seule décimale)

620 Tableau à double entrée
En guise de conclusion Exemple : le naufrage du Titanic La question : influence de la classe sur la survie des passagers les % de sauvés sont-ils différents selon la classe ? Données : Source : Masuy-Stroobants G. & Costa R. (2013), Analyser les données en sciences sociales, pp Pour une analyse plus complète, cf. cette référence. Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

621 Tableau à double entrée
En guise de conclusion Exemple : le naufrage du Titanic La question : influence de la classe sur la survie des passagers les % de sauvés sont-ils différents selon la classe ? Données : Source : Masuy-Stroobants G. & Costa R. (2013), Analyser les données en sciences sociales, pp Pour une analyse plus complète, cf. cette référence. Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

622 Naufrage du Titanic La question : les % de sauvés ≠ selon la classe ?
Données : Que calculer : % en ligne ou en colonne ? 1er calcul : % de sauvés parmi la 1re classe (& voir si ≠ autres cl.) si « % de sauvés parmi la 1re classe » pas évident  « trucs » traduire cette expression de manière plus explicite : « Que vaut le % de sauvés parmi les passagers de la 1re classe en prenant comme diviseur le total des passager de la 1re classe ? » « parmi la 1re classe »  calcul dans la ligne de la 1re classe Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

623 Naufrage du Titanic La question : les % de sauvés ≠ selon la classe ?
Données : Que calculer : % en ligne ou en colonne ? 1er calcul : % de sauvés parmi la 1re classe (& voir si ≠ autres cl.) si « % de sauvés parmi la 1re classe » pas évident  « trucs » traduire cette expression de manière plus explicite : « Que vaut le % de sauvés parmi les passagers de la 1re classe en prenant comme diviseur le total des passager de la 1re classe ? » « parmi la 1re classe »  calcul dans la ligne de la 1re classe Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

624 Naufrage du Titanic La question : les % de sauvés ≠ selon la classe ?
Données : Que calculer : % en ligne ou en colonne ? 1er calcul : % de sauvés parmi la 1re classe (& voir si ≠ autres cl.) si « % de sauvés parmi la 1re classe » pas évident  « trucs » traduire cette expression de manière plus explicite : « Que vaut le % de sauvés parmi les passagers de la 1re classe en prenant comme diviseur le total des passager de la 1re classe ? » « parmi la 1re classe »  calcul dans la ligne de la 1re classe Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

625 Naufrage du Titanic La question : les % de sauvés ≠ selon la classe ?
Données : Que calculer : % en ligne ou en colonne ? 1er calcul : % de sauvés parmi la 1re classe (& voir si ≠ autres cl.) si « % de sauvés parmi la 1re classe » pas évident  « trucs » traduire cette expression de manière plus explicite : « Que vaut le % de sauvés parmi les passagers de la 1re classe en prenant comme diviseur le total des passager de la 1re classe ? » « parmi la 1re classe »  calcul dans la ligne de la 1re classe Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

626 Naufrage du Titanic La question : les % de sauvés ≠ selon la classe ?
Données : Que calculer : % en ligne ou en colonne ? 1er calcul : % de sauvés parmi la 1re classe (& voir si ≠ autres cl.) si « % de sauvés parmi la 1re classe » pas évident  « trucs » traduire cette expression de manière plus explicite : « Que vaut le % de sauvés parmi les passagers de la 1re classe en prenant comme diviseur le total des passager de la 1re classe ? » « parmi la 1re classe »  calcul dans la ligne de la 1re classe Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

627 Naufrage du Titanic La question : les % de sauvés ≠ selon la classe ?
Données : Que calculer : % en ligne ou en colonne ? 1er calcul : % de sauvés parmi la 1re classe (f11, l) : 1. f11 sera obtenu via une division  mettre une barre de fraction 2. dénominateur : % de sauvés parmi la 1re classe à droite de « parmi » = la 1re classe sous-entendu « le TOTAL de la 1re classe » 3. numérateur : % de sauvés parmi la 1re classe à gauche et à droite de « parmi »  les sauvés de la 1re classe Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

628 Naufrage du Titanic La question : les % de sauvés ≠ selon la classe ?
Données : Que calculer : % en ligne ou en colonne ? 1er calcul : % de sauvés parmi la 1re classe (f11, l) : 1. f11 sera obtenu via une division  mettre une barre de fraction 2. dénominateur : % de sauvés parmi la 1re classe à droite de « parmi » = la 1re classe sous-entendu « le TOTAL de la 1re classe » 3. numérateur : % de sauvés parmi la 1re classe à gauche et à droite de « parmi »  les sauvés de la 1re classe Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

629 Naufrage du Titanic La question : les % de sauvés ≠ selon la classe ?
Données : Que calculer : % en ligne ou en colonne ? 1er calcul : % de sauvés parmi la 1re classe (f11, l) : 1. f11 sera obtenu via une division  mettre une barre de fraction 2. dénominateur : % de sauvés parmi la 1re classe à droite de « parmi » = la 1re classe sous-entendu « le TOTAL de la 1re classe » 3. numérateur : % de sauvés parmi la 1re classe à gauche et à droite de « parmi »  les sauvés de la 1re classe Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

630 Naufrage du Titanic La question : les % de sauvés ≠ selon la classe ?
Données : Que calculer : % en ligne ou en colonne ? 1er calcul : % de sauvés parmi la 1re classe (f11, l) : 1. f11 sera obtenu via une division  mettre une barre de fraction 2. dénominateur : % de sauvés parmi la 1re classe à droite de « parmi » = la 1re classe sous-entendu « le TOTAL de la 1re classe » 3. numérateur : % de sauvés parmi la 1re classe à gauche et à droite de « parmi »  les sauvés de la 1re classe Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308

631 Naufrage du Titanic La question : influence de la classe sur la survie des passagers Données : % en ligne : Que conclure ? De la 1re à la 3e classe, le % de sauvés passe de 63% à 25% Les passagers de la 1re classe mieux protégés Rappel : début d’analyse Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308 Classe Sauvés Morts Total 1re 62,8% 38,2% 100,0% 2e 41,5% 58,5% 3e 24,8% 75,2% 37,7% 62,3%

632 Naufrage du Titanic La question : influence de la classe sur la survie des passagers Données : % en ligne : Que conclure ? De la 1re à la 3e classe, le % de sauvés passe de 63% à 25% Meilleure survie parmi les passagers de la 1re classe Rappel : début d’analyse Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308 Classe Sauvés Morts Total 1re 62,8% 38,2% 100,0% 2e 41,5% 58,5% 3e 24,8% 75,2% 37,7% 62,3%

633 Naufrage du Titanic La question : influence de la classe sur la survie des passagers Données : % en ligne : Que conclure ? De la 1re à la 3e classe, le % de sauvés passe de 63% à 25% Meilleure survie parmi les passagers de la 1re classe Rappel : début d’analyse (pour en savoir +, cf. Masuy-Stroobants G. & Costa R. (2013) Classe Sauvés Morts Total 1re 202 120 322 2e 115 162 277 3e 176 533 709 493 815 1.308 Classe Sauvés Morts Total 1re 62,8% 38,2% 100,0% 2e 41,5% 58,5% 3e 24,8% 75,2% 37,7% 62,3%

634 Très important dans votre étude !
Chapitre 1. Résumé Très important dans votre étude ! À vous de le faire, mais ici, on le fait ensemble !

635 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

636 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

637 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

638 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

639 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

640 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

641 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

642 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

643 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

644 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données

645 Chapitre 1. Résumé Que diriez-vous ?
Voici mon résumé. À vous de voir si cela vous convient ! Super-résumé en 2 questions : si étude statistique, que faire avant de commencer ? que faire pour commencer ? Avant de commencer, identifier : les unités et la population sous observation (i et n) la variable et ses caractéristiques (X et xi ; quali.<>quanti. ; discrète<>discrète) Ensuite, mettre de l’ordre et GROUPER tableau des effectifs et des fréquences (mécanique + p, xp, np, fp, Nk et Fk) tableau à double entrée : choix du type de fréquence Bref, commencer à s’approprier les données (rappel : idée générale)


Télécharger ppt "Chapitre 1 Généralités sur les données"

Présentations similaires


Annonces Google