Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
1
R des 2 jets et HT des evenements
R: separation spatiale dans le plan x des 2 jets de plus grande impulsion transverse. On observe un bon accord entre les donnees et la simulation. Comparaison realisee avec la simulation Alpgen Loose Tight HT: somme des impulsions transverses des jets contenus dans l’evenement. On observe une discrimination entre les evenements Top et Wbb.
2
CDF: production W(en/mn)H(bb)
Selection des evenements : e/ central isole, pT > 20 GeV MET > 20 GeV Deux jets: ET > 15 GeV, || < 2 Veto Di-lepton, extra jet Observe 2072 evenement dans Lint=162 pb-1 Demande au moins un jet etiquete Observe 62 evenements de donnees Attendu 61 ± 5 events Principal bruit de fond attendu : Attend 0.3 evts du Higgs Efficacite du signal ~ 1.8% pour MH = 110 – 130 GeV Mis-id Wc(c) Wbb QCD top 14 13 12 10 9
3
CDF: production W(en/mn)H(bb)
Determination de limite a 95% C.L. sur la section efficace du Higgs multiplie par le rapport d’embranchement : ×B < 5 pb Etudes systematiques Source Erreur(%) ISR / FSR 19 Vertex secondaire 8.6 Identification lepton 5 Calib. energie jets 3 PDF 1 Declenchement 0.7 Total 22 Depasse les resultats de CDF au Run I [PRL 79, 3819(1997)] ×B < 14 – 19 pb pour MH = 70 – 120 GeV
4
Les performances du tracking
reconstruction des : combinaison du tracking central et des chambres à SMT: dE/dx possibilité d'identification des particules résolution du paramètre d'impact résolution: M(J /)=60 MeV/c2 (DCA) 16 PT = 10 GeV (DCA) 54 PT = 1 GeV bonne comparaison data/MC
5
L'échelle d'énergie des jets
erreur systématique principale pour de nombreuses analyses actuellement erreur conservatrice de 6-7% - objective: 2% (2.5% au RunI) Correction de l'énergie mesurée par: Offset: bruit électronique, bruit d'uranium, événement sous jacent événements zéro-biais et biais minimum (données) "out of cone showering": densité d'énergie autour du cône du jet (données) Réponse: Emeas/Edeposit 1 comparaison de l'énergie dans des événements +jet (données)
6
La résolution des jets Jet pT Resolution N = 0.0 2.2,
Résolution des jets en pT: en utilisant l'asymétrie en pT dans des événements di-jet Jet pT Resolution la résolution est paramétrée par: N = 0.0 2.2, S = 0.045, C = 0.008 amélioration en cour par calibration en fonction de la fraction em!
7
Conclusion on Coarse Hadronic…
For zero and minimum bias events : at 1.5 the CH energy represents 29% of total scalar ET at 2.5 the CH energy represents 22% of total scalar ET For QCD events : at 1.5 the CH energy represents 21% of total scalar ET at 2.5 the CH energy represents 15% of total scalar ET Just adding more noise: +4 GeV Coarse Hadronic With Coarse Hadronic Without Coarse Hadronic MET SET
8
DØ: W(en)bb production (1)
Motivation: Background to WH production Event selection Central isolated e, pT > 20 GeV Missing ET > 25 GeV ≥ two jets: ET > 20 GeV, |η| < 2.5 2587 evts. in Lint=174 pb-1 of data Simulations with Alpgen plus Pythia through detailed detector response Cross sections normalized to MCFM NLO calculations Good understanding of data
9
b-jet tagging Essential for Hbb searches
Can make use of the track impact parameter (IP) measurements or secondary vertex reconstruction CDF: performance of sec. vtx. algorithm (after kinematics cuts) ~50% b-tag efficiency for ~0.6% light quark mis-tag rate in |η| < 1 DØ in Run II is able to b-tag up to |η| < 2.5 Performance being improved b-tagging efficiency vs light quark mis-tag rate DØ RunII Preliminary Both experiments are demonstrating good b-tagging capabilities
10
Run / LBN Selection Final Luminosity: 174.3 pb-1 Selection:
Bad Runs from the CAL, SMT, CFT are rejected. Events with bad luminosity blocks are rejected : Jet/Met lumi-blocks Ring of fire A few contiguous lumi-blocks in which there is high proportion of unphysical Scalar ET Before all this luminosity = 187 pb-1 (+7pb-1 summer 2002) Final Luminosity: pb-1
11
Zee for Calibration M(ee) 1 and 2 Tights Data compared to detailed simulation in which a gaussian smearing of 3.5% and a rescaling of +0.75% is applied to the electron energy. 130pb-1 di-em skim M(ee) 1 and 2 Tights
12
Tevatron: current and projected performance
36×36 bunches 396 ns bunch crossing design: challenging base: conservative FY’04 Integrated Luminosity 11/23/ /18/ /14/04 Measured luminosity 12 pb-1 / week is also above the design projection Start of Fiscal Year Integrated Luminosity (fb-1)
13
CDF: W(en/mn)H(bb) production (2)
Enrich the b-content of events Require at least one b-tagged jet Observe 62 events in data Expect 61 ± 5 events Main contributions to the bkgd: Expect 0.3 evts from Higgs Signal acceptance of ~ 1.8% for MH = 110 – 130 GeV Mistags Wc(c) Wbb QCD top 14 13 12 10 9 good agreement between data and MC
14
Résolution en masse du Higgs
Significativité en fonction de la résolution à Mhiggs=120 GeV Masse invariante bb : Résolution 15 % 10% Signal événements/fb-1 4 Wbb 59 32 WZ 11 6 tt 34 24 Top (électrofaible) 14 10 Pour 10 fb-1 Actuellement 12% de résolution pour un Higgs de 115 GeV.
15
Feynman g
16
b-Tagging with JLIP, CSIP, SVX
Taggability is now common to the 3 algorithms: % in MC, % in data. What about tagging ? Medium or Tight criteria ? Jlip tight Csip t. Svx m. March
17
Correlations tight JLIP/tight CSIP
JLIP : 100 vs CSIP: 124 vs 110.0 70 Data vs 62.5 Bck di-jets events single tagged by JLIP and CSIP simultaneously. Better than at LP Warning: Here MC has slightly changed after 03/03 (but before EB review) jet reco efficiency, data/mc-tagging efficiency
18
b-Tagging with Tight JLIP
What happens in ALPGEN Wjj ? Tight JLIP allows to keeps good correlation, also true for CSIP. The simulation is corrected by the differences of efficiencies with data ( %) Tagging algorithms also applied on the simulation. 1 tag 0 tag 2 tags Initial flavor compos. b from gluon splitting/PS c from cc/g.s.
19
Final Plots… Jet Multiplicities
20
Data Selection Isolation < 0.10 Em HM7 < 30 Em HM8 < 75
EmFraction isolation EmFraction isolation
21
xy-shift in Missing ET, xy-rms
TMB fix +T42 After run selection one entry per file (about 10 lumiblocks) The missing ET - x is convoluted with a gaussian of mean 0.0 GeV and RMS 1.2 GeV Missing ET-y with a gaussian of mean –0.4 GeV and a RMS of 1 GeV. GeV GeV
22
W+ 2 jets If we applied a cut on WT>25 GeV, no more bump. Moriond
Loose Tight Tight Loose Tight If we applied a cut on WT>25 GeV, no more bump.
23
identified as electron
What’s happening? JET 45 Gev (JES) You have a Di-Jet event of 20 GeV, one is identified as an electron, the other is fluctuating at 30 GeV. You applied JES to the 30 GeV jet 45 GeV. You then have a missing ET of 25 GeV. JET 30 Gev (Fluctuation) MET 25 GeV JET 20 Gev Your event is passing the criteria, the W mass will be low, the PT of the W will be 20+25=45 GeV. JET identified as electron 20 Gev el - MET -
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.