La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Effets biologiques des rayonnements ionisants Radioprotection

Présentations similaires


Présentation au sujet: "Effets biologiques des rayonnements ionisants Radioprotection"— Transcription de la présentation:

1 Effets biologiques des rayonnements ionisants Radioprotection
Pr E. Garin, Biophysique et Médecine Nucléaire, Centre Eugène Marquis.

2 Plan du cours 1) Généralités sur les RI. 1. 1 Différents types de RI.
1. 2 Unités. 2) Lésions moléculaires. 2.1 Principe général. 2. 2 Radiolyse de l’eau. 2. 3 Effets des RI sur l’ADN. 3) Lésions cellulaires. 3. 1 Mort cellulaire. 3. 2 Retard de mitose. 3. 3 Restauration cellulaire. 4) Effets sur les tissus humains. 4. 1 Effets déterministes. 4. 2 Effets stochastiques. 5) Les différentes sources d’irradiation. 6) Radioprotection

3 Introduction Rayonnement = propagation d’énergie à travers l’espace.
Les RI interagissent avec la matière en produisant des excitations ou des ionisations = absorption Les RI sont responsables de lésions biologiques néfastes ou utilisées à des fins thérapeutiques. Les sources de RI sont nombreuses et variées.

4 1) Généralités sur les RI. 1 Différents types de RI.
a) Rayonnements a: - noyau d’hélium (2 neutrons et 2 protons), - très énergétiques (plusieurs Mev), - fort pouvoir ionisant, - pouvoir de pénétration très faible: qq cm dans l’air, qq dizaines de m dans l’eau ou les tissus mous, stoppés par une feuille de papier, trajectoire linéaire car masse importante (7000 x plus lourde qu’un électron). b) Rayonnements b: - électrons (b-) et positons (b+), - énergie très variable (de 0 à plusieurs Mev), - pouvoir ionisant intermédiaire, - pouvoir de pénétration faible: qq mètres dans l’air, qq mm dans l’eau et les tissus mous, stoppés par un obstacle mince (ex: feuille d’alu de qq millièmes à qq mm), trajectoire sinueuse (masse légère).

5 d) Rayonnements neutroniques: - neutrons,
c) Rayonnements X et g: - radiations électromagnétiques d’origine atomique (X) ou nucléaire (g), - énergie variable (qq Kev à qq Mev, celle des X est souvent < à celle des g), - pouvoir ionisant faible, ionisations indirectes, - pouvoir de pénétration très important: plusieurs centaines de mètres dans l’air, traversent facilement l’organisme, stoppés par qq mm de plomb pour les X et jusqu’à plusieurs cm de plomb pour les g. d) Rayonnements neutroniques: - neutrons, - énergie élevée, - pouvoir ionisant fort mais ionisations indirectes (collision avec les noyaux), - pouvoir de pénétration très important: pratiquement pas ralentis par l’air, pénètrent profondément dans l’organisme puis absorption importante par les tissus mous, traversent les blindages.

6 2 Unités. a) Unité physique de dose absorbée. La dose absorbée D correspond à l’énergie déposée par le RI par unité de masse. D = dE/dm, en joule/Kg. D est exprimée en Gray (Gy) avec 1 Gy = 1 joule/Kg. => la dose absorbée dépend de la nature du RI considéré et de la nature des tissus irradiés Le débit de dose absorbée D correspond à la dose absorbée par unité de temps. D = dD/dt, en Gy/s. => Une même dose absorbée peut se rencontrer dans 2 situations totalement différentes : faible débit de dose et exposition prolongée, fort débit de dose et exposition brève

7 b) Unité biologique d’équivalent de dose.
La dose absorbée ne permet pas à elle seule d’expliquer les effets biologiques des RI. D’autres paramètres interviennent tels que la nature des RI considérés et la nature des tissus irradiés. L’équivalent de dose H fait intervenir la nature des RI. H = D  Wr, en Sievert (Sv) et 1 Sv = 1 Gy où Wr = Facteur de qualité caractérisant le RI, Wr = 1 pour les X, les g, et les b, Wr = 5 à 20 pour les neutrons en fonction de leur énergie, Wr = 20 pour les a.

8 L’équivalent de dose efficace He fait intervenir la nature des RI et des tissus.
He = D  Wr  Wt en Sv où Wt = Facteur de distribution caractérisant le milieu. Organes Wt Gonades 0.2 Moelle osseuse, Estomac 0.12 Colon, Poumons Vessie, sein, foie Œsophage, thyroïde 0.05 Peau, surface osseuse Corps entier 1

9 c) Unité d’activité. Le débit de dose D délivré par une source radioactive dépend directement de l’activité de cette source (il dépend aussi de la distance et du milieu traversé). L’activité d’une source radioactive corresponds à la quantité de radioactivité présente dans la source, activité = nombre de désintégrations radioactives par seconde. USI = becquerel (Bq), 1 Bq = 1 désintégration par seconde. Ancienne unité: curie, 1 mCi = 37 MBq

10 Plan du cours 1) Généralités sur les RI. 1. 1 Différents types de RI.
1. 2 Unités. 2) Lésions moléculaires. 2.1 Principe général. 2. 2 Radiolyse de l’eau. 2. 3 Effets des RI sur l’ADN. 3) Lésions cellulaires. 3. 1 Mort cellulaire. 3. 2 Retard de mitose. 3. 3 Restauration cellulaire. 4) Effets sur les tissus humains. 4. 1 Effets déterministes. 4. 2 Effets stochastiques. 5) Les différentes sources d’irradiation. 6) Radioprotection

11 Le transfert d’énergie: - forme thermique = négligeable,
2) Lésions moléculaires. 2.1 Principe général. Le phénomène initial = transfert d’une partie de l’énergie radiative à la molécule. Le transfert d’énergie: - forme thermique = négligeable, - ionisations, excitations. L’excès d’énergie est expulsé soit par émission de photons (fluorescence) soit par transfert de cette énergie sur une liaison au voisinage qui peut se rompre. => l’excès d’énergie interne compromet la stabilité de la molécule et peut être responsable de modifications des liaisons chimiques donc de lésions moléculaires.

12 Les RI possèdent 2 particularités:
- efficacité importante pour créer les lésions moléculaires, - absence de spécificité moléculaire (les lésions dépendent de la nature des atomes constituant la molécule). => toutes les molécules de l’organisme peuvent être modifiées, 2 sont particulièrement importantes: - l’eau (70% du poids de l’organisme, siège le plus fréquent des lésions moléculaires), - l’ADN (modifications du patrimoine génétique).

13 Radical libre = atome ou molécule possédant un électron non apparié.
2. 2. Radiolyse de l’eau. L’irradiation de l’eau aboutit à la formation de radicaux libres de haute réactivité chimique. Radical libre = atome ou molécule possédant un électron non apparié. a) Etape initiale Excitation: h + H2O  H2O Ionisation: h + H2O  H2O.+ + e- b) Etape pré-diffusionnelle (délais de S). Les molécules excitées et radicalaires donnent lieu aux réactions suivantes: - H2O  OH. + H. - H2O.+  OH. + H+ L’électron éjecté lors de l’ionisation se stabilise au niveau de l’énergie thermique et s’entoure d’une cage de molécules d’eau pour former un électron acqueux (e-aq) réducteur puissant. Certains électrons éjectés se recombinent avec les ions positifs du milieu (H2O.+ , H+).

14 c) étape diffusionnelle (10-6 S).
Les produits de la radiolyse (OH., H., e-aq, H+) se recombinent simultanément entre eux ou diffusent dans le milieu. Les principales recombinaisons sont: - OH. + OH.  H2O2 (eau oxygénée, oxydant puissant) - OH. + e-aq  OH- - OH. + H.  H2O - e-aq + H+  H. - H. + H.  H2 A la fin de l’étape diffusionnelle les produits de radiolyse présents dans le milieu sont: OH., e-aq, H., H+, H2O2 et H2

15 Réaction avec un radical OH. R-H + OH.  R. + H2O R. + OH.  R-OH
d) Etape chimique. Les radicaux ainsi formés, hautement réactifs, peuvent modifier les liaisons chimiques et être responsable d’altérations moléculaires. Par exemple: Réaction avec un radical OH. R-H + OH.  R. + H2O R. + OH.  R-OH Réaction avec un radical H. R-H + H.  R. + H2 R. + R’.  R-R’ => inactivations enzymatiques, dégradation des macromolécules.

16 e) Effet radiosensibilisant de l’oxygène.
L’oxygène augmente l’effet biologique des RI par l’intermédiaire de 2 types de réactions: - créations de radicaux libres HO2. à partir de 2 réactions H. + O2  HO2. e-aq + O2  O2-, O2- + H2O  HO2. + OH- Ce radical libre (HO2.) est beaucoup plus stable que les radicaux OH. et H. Il entraîne la formation d’eau oxygénée (HO2. + HO2.  H2O2 + O2; HO2. + H.  H2O2). - créations de radicaux péroxydes (toxiques à demie vie longue, persistant après l’irradiation): R. + O2  ROO. f) Molécules radioprotectrices. Certaines molécules possèdent à l’inverse un pouvoir radioprotecteur comme les molécules ayant un radical thiol (mécanisme inconnu).

17 2. 3 Effets des RI sur l’ADN. Effets directs des RI sur l’ADN. Les effet sur l’ADN peuvent être de deux types, directs ou indirects. Les effets directs sont secondaires aux transfert direct de l’énergie du RI à la molécule d’ADN. Les effets indirects correspondent aux effets secondaires aux réactions physico-chimiques ayant lieu dans l’environnement proche de l’ADN (radiolyse de l’eau principalement). Les RI peuvent être responsables de ruptures d’un ou des deux brins de la chaîne d’ADN (cassure simple brin : CSB ; ou double brin : CDB), de modifications chimiques des bases ou des sucres et de différents types de pontages.

18 b) Expression biologique des lésions de l’ADN.
La plupart des lésions de l’ADN n’ont pas d’expression biologique pour 2 raisons: - les différentes régions de la chaîne d’ADN ne sont pas codante pour la synthèse de protéines, pour une cellule donnée environ 90% des gènes ne s’expriment pas. - la plupart des lésions sont réparables. c) Mécanismes de réparation. Environ 1000 km d’ADN sont synthétisés par seconde dans l’organisme humain. Agression permanente de l’ADN - radioactivité naturelle - radicaux libres produits par le métabolisme oxydatif (3500 CSB et 10 CDB par cellule et par jour) => Il existe des mécanismes de réparation efficaces de l’ADN

19 d) Les différents mécanismes de réparation.
Excision resynthèse. C’est le mécanisme prépondérant, il a lieu sur les chaînes d’ADN qui ne sont pas en réplication: - reconnaissance de la lésion par une endonucléase, - excision du segment lésé par une exonucléase, - synthèse d’un nouveau fragment par une ADN polymérase en prenant le brin intact comme modèle, - ligation du brin resynthétisé à la chaîne d’ADN par une ligase. => la réparation est fidèle.

20 Recombinaison post-réplicative.
Ce mécanisme survient quand les cellules sont en phase S. - l’ADN polymérase ne reconnaît pas la lésion et ne peut pas répliquer le fragment lésé => brèche, - cette brèche est comblée par le transfert du segment d’ADN correspondant provenant de l’autre brin de la chaîne mère intacte; - cette deuxième brèche est réparée par resynthèse et la lésion par excision resynthèse. => la réparation est fidèle.

21 Réparation SOS ou mutagène.
Ce mécanisme ne fonctionne pas en permanence, il est induit dans certaines conditions pathologiques (ex: irradiation). Synthèse d’une protéine particulière ( RecA) levant l’inhibition de la réplication des fragments lésés. La réplication de l’ADN peut se poursuivre mais la lésion n’est pas remplacée par la structure saine correspondante => apparition d’une mutation. Réparation des ruptures doubles brins. Mécanismes mal précisés, réparations pouvant être fautives.

22 Ces mécanismes de réparations peuvent néanmoins être insuffisants:
- en particulier lorsque le nombre de lésions à réparer est très important (saturation des systèmes enzymatiques), notamment en cas d’irradiations fortes à débit élevé, - dans certains cas la réparation est fautive: le brin réparé n’est pas la copie fidèle du brin intact, => apparition possible de mutations malgré les systèmes de réparation.

23 Ce processus de transformation maligne est très complexe et très long
e) Les mutations. Dans certains cas les RI sont responsables de lésions chromosomiques non létales pouvant conférer à la cellule mutée de nouvelles propriétés. Certaines mutations touchant une cellule somatique peuvent être responsable de développement de cancers. Proto-oncogène   initiation = mutation Oncogène (prolifération infinie, immortalité) , 200 sont connus   promotion (sélection clonale,instabilité chromosomique...) Tumeur Ce processus de transformation maligne est très complexe et très long Si la mutation touche une cellule germinative elle peut être transmise à la descendance et être responsable d’anomalies héréditaires.

24 f) Lésions chromosomiques.
La plupart des lésions provoquées sur l’ADN par les RI ne sont pas directement observables. Dans certains cas elle peuvent se traduire par des anomalies structurales visibles au microscope quand se forme les chromosomes: délétions, translocations, chromosomes en anneau, chromosomes dicentriques (2 centromères). L’apparition de chromosomes dicentriques est spécifique d’une irradiation et permet d’apprécier la dose reçue par un sujet irradié: - observation des lymphocytes en métaphase 2 Gy => 20% de dicentriques 1 Gy => 8% de dicentriques 0.5 Gy => 2% de dicentriques < 0.25 Gy => non mesurable.

25 Plan du cours 1) Généralités sur les RI. 1. 1 Différents types de RI.
1. 2 Unités. 2) Lésions moléculaires. 2.1 Principe général. 2. 2 Radiolyse de l’eau. 2. 3 Effets des RI sur l’ADN. 3) Lésions cellulaires. 3. 1 Mort cellulaire. 3. 2 Retard de mitose. 3. 3 Restauration cellulaire. 4) Effets sur les tissus humains. 4. 1 Effets déterministes. 4. 2 Effets stochastiques. 5) Les différentes sources d’irradiation. 6) Radioprotection

26 3. Les lésions cellulaires.
3. 1 Mort cellulaire. Mort cellulaire immédiate. La mort cellulaire immédiate ne survient que pour des doses d’irradiation extrêmement importantes de l’ordre de quelques centaines de Gy. b) Mort cellulaire différée. Les cellules irradiées continuent de fonctionner mais perdent la capacité de se multiplier (aberrations chromosomiques), la mort cellulaire survient après un temps variable dépendant de la vitesse de renouvellement cellulaire. Le phénomène de mort cellulaire différée est d’autant plus précoce que les cellules ont un haut pouvoir de prolifération: cellules souches de la moelle osseuse, cellules intestinales, cellules de la peau, cellules cancéreuses.

27 c) Influence du débit de dose sur l’effet létal.
Pour une même dose, l’effet des RI est plus important si le débit de dose augmente. Les variations sont importante entre 10-2 et 1 Gy/min. % cellules vivantes Cette augmentation de l’effet pour des fort débits de dose s ’explique par la saturation des mécanismes de réparation de l’ADN. Débit dose

28 d) Influence de la phase du cycle cellulaire sur l’effet létal.
Le cycle cellulaire est constitué de 5 phases: - G1 (6h) = synthèse des enzymes nécessaires à la synthèse d’ADN, - S (10h) = synthèse de l’ADN, - G2 (5h) = préparation à la mitose, - M (1h) = mitose, - G0 (durée variable) = fonctions physiologiques. Les cellules sont le plus radiosensibles pendant la mitose et la phase G2. => les cellules de l’organisme qui ont un haut pouvoir de prolifération sont plus radiosensibles.

29 3. 2. Le retard de mitose. Lorsque la dose de RI est relativement faible il n’y a pas de mort cellulaire mais éventuellement uniquement un retard de mitose de quelques heures (allongement de la phase G2 ou de la phase S). 3.3. La restauration cellulaire. Dans les premières heures qui suivent une irradiation, les cellules peuvent réparer une partie des dommages causés. Les cellules saines sont capables de réparer leurs lésions beaucoup plus rapidement que les cellules cancéreuses, => fractionnement des doses en radiothérapie.

30 Plan du cours 1) Généralités sur les RI. 1. 1 Différents types de RI.
1. 2 Unités. 2) Lésions moléculaires. 2.1 Principe général. 2. 2 Radiolyse de l’eau. 2. 3 Effets des RI sur l’ADN. 3) Lésions cellulaires. 3. 1 Mort cellulaire. 3. 2 Retard de mitose. 3. 3 Restauration cellulaire. 4) Effets sur les tissus humains. 4. 1 Effets déterministes. 4. 2 Effets stochastiques. 5) Les différentes sources d’irradiation. 6) Radioprotection

31 4. Les effets tissulaires des RI.
On distingue deux types d’effets chez l’homme: les effets obligatoires ou déterministes secondaires aux lésions létales, et les effets aléatoires ou stochastiques secondaires aux lésions non létales. 4.1. Les effets déterministes. Ils apparaissent au-delà d’une dose seuil dont la valeur est généralement connue pour une lésion donnée. Si la dose est inférieure au seuil, le nombre de cellules détruites est trop faible pour que l’effet soit apparent. Une fois que le seuil de dose est atteint, ils apparaissent de façon obligatoire. Au dessus du seuil, la gravité de l’effet dépend de la dose reçue.

32 a) Après irradiations globales aiguë.
=> altérations de la moelle osseuse hématopoïétique, de l’intestin et du SNC. - Syndrome hématopoïétique (1Gy): mortel, sans traitement, pour 50% des patients pour une dose > 3 à 4 Gy. Granulopénie => infections Thrombopénie => hémorragies Anémie => pâleur cutanéo-muqueuse, asthénie, dyspnée... - Syndrome digestif (7Gy): ulcérations digestives, déséquilibre hydro-électrolytique (mort par déshydratation en quelques jours pour une dose > 10 Gy). Syndrome neurovasculaire (40Gy): désorientation, détresse respiratoire, convulsions, coma (décès en 48h).

33 b) Effets des Irradiations localisées sur les organes. La peau :
Brulures (3Gy) Tardivement Fibrose (12 Gy) Les gonades. Testicules: stérilité définitive (6 Sv) Ovaires: stérilité à partir de (12 Sv) Les yeux: cataracte (2 Sv) Les poumons : Fibrose (30 Gy). Les reins : Radionéphrite avec HTA et IR à partir de 20 Gy. Les os : Radionécrose (70 Gy). La thyroïde : Hypothyroïdie chez 50% des sujets pour 200 Gy

34 e) Effet des RI sur l’embryon et le foetus.
Dans les huit premiers jours : loi du tout ou rien Fausse couche pour une irradiation de 4 Gy ou poursuite d’une grossesse normale. De J9 à J 60. Période d’organogénèse avec prolifération rapide de tous les tissus  période de radiosensibilité élevée avec risque de mort in utéro (4Gy) ou d’apparition de malformations (> 0.5 Gy): Après J 60. Période foetale. Radiosensibilité moins importante, - retard de croissance, petite taille adulte, - risque cancérigène (leucémie, néphroblastomes...).  Irradiation diagnostique ou thérapeutique interdite les 10 jours suivant le début des règles pour les femmes en période d’activité génitale afin d’éviter d’irradier un début de grossesse.

35 4. 2. Les effets stochastiques.
Ce sont des effets rares qui apparaissent de façon aléatoire, secondairement à des lésions non létales (mutations). On ne sait pas s’il existe un effet seuil. La gravité des effets stochastiques est d’emblée maximale.  Cancers radio-induits et anomalies génétiques

36 a) Les cancers radio-induits.
Le cancer est le principal risque tardif des irradiations. La mise en évidence d’une relation irradiation/cancer est difficile : - aucun critère ne permet de différencier un cancer radio-induit d’un cancer d’autre origine, - la fréquence spontanée des cancers est élevée (25% de la mortalité) - le surplus de cancers liés aux RI est faible (1 à 2% des cancers)  nécessité de comparer la fréquence des cancers sur des populations très importantes, - développement de façon très tardive: plusieurs années à plusieurs dizaines d’années après l’irradiation: en moyenne 8-10 ans pour les leucémies, ans pour les tumeurs solides => observation sur des périodes très longues, - existence concomitantes d’autres facteurs de risques (tabac, alimentation, toxiques) pouvant biaiser les études.

37 La relation irradiation/cancers à été mise en évidence chez l’homme en particulier à partir de différentes études: surveillance des survivants d’Hiroshima et de Nagasaki (étude la plus importante réalisée) :  sujets, 41719, dose > 0.01 Gy; 4801, dose > 0.5 Gy,  567 décès par cancer entre 1950 et 1985 (366 pour la population témoin),  étude en fonction des doses impossible (pas assez de sujets pour les différentes classes),

38 Le risque de cancers est prouvé pour des doses importantes, > 0
Le risque de cancers est prouvé pour des doses importantes, > 0.5 Sv, Le risque relatif est faible, 1 à 2%, Aucune étude n’a mis en évidence une augmentation des cancers pour des faibles doses, < 0.5 Sv, mais effectifs trop faibles s’il existe un risque à faibles doses, il est vraisemblablement très faible. Le risque de cancers radio-induit dépend : - du tissus irradié: sein > thyroïde > moelle, - de l’âge: enfants et adolescents, - du sexe:  chez les femmes, - du débit de dose:  hauts débits.

39 b) Les effet génétiques.
Anomalie stable radio-induite des gamètes transmissible héréditairement. La probabilité pour qu’une mutation radio-induite ait un effet sur la descendance est très faible, elle dépend de: - P mutation, - P que la mutation soit transmissible, - P de lésion non létale (pour l’ovule ou l’embryon), - P région codante du génome. Le bruit de fond est très important: - 9% de mutation dans la population générale, 10% des NN présentent une anomalie congénitale (génétique ou tératogène). La mise en évidence d’un effet héréditaire des RI chez l’homme est difficile à étudier. Risque actuellement non démontré S’ il existe, le risque héréditaire est vraisemblablement très faible.

40 4. 2. Les effets stochastiques.
Ce sont des effets rares qui apparaissent de façon aléatoire, secondairement à des lésions non létales (mutations). On ne sait pas s’il existe un effet seuil. La gravité des effets stochastiques est d’emblée maximale. => Cancers radio-induits et anomalies génétiques

41 Plan du cours 1) Généralités sur les RI. 1. 1 Différents types de RI.
1. 2 Unités. 2) Lésions moléculaires. 2.1 Principe général. 2. 2 Radiolyse de l’eau. 2. 3 Effets des RI sur l’ADN. 3) Lésions cellulaires. 3. 1 Mort cellulaire. 3. 2 Retard de mitose. 3. 3 Restauration cellulaire. 4) Effets sur les tissus humains. 4. 1 Effets déterministes. 4. 2 Effets stochastiques. 5) Les différentes sources d’irradiation. 6) Radioprotection

42 5) Les différentes sources d’irradiation.
L’homme est soumis en permanence à des RI: - origine naturelle (cosmique, tellurique, interne), - origine artificielle (médicale, industrielle, domestique, explosions nucléaires); a) Irradiation naturelle C’est une irradiation permanente à faible débit de dose. La dose efficace annuelle est en moyenne par individu de 2.4 mSv/an.

43 Irradiation cosmique: RI provenant du soleil et des galaxies.
La dose efficace annuelle est en moyenne par individu de 0.39 mSv/an. Elle augmente faiblement au niveau des pôles et beaucoup avec l’altitude (x 2 tous les 1500 m): Altitude (m) He (mSv/an) 0.26 1000 0.36 2000 0.64 3000 1.1

44 Irradiation tellurique:
RI provenant des constituants de l’écorce terrestre ou de différents matériaux (à l’intérieur des habitations). La dose efficace annuelle est en moyenne par individu de 0.46 mSv/an. Elle dépend de la nature du sol: He (mSv/an) craie 0.3 sédiments 0.5 granit 1 à 1.5 L’exposition tellurique varie beaucoup en fonction des pays ou régions: - France: 0.6 mSv/an 1.3 à 1.7 mSv/an dans les régions granitiques 0.14 mSv/an dans les Bouches-du-Rhône - 4 à 7 mSv/an dans le Kérala en Indes, - jusqu’à 400 mSv/an en Iran.

45 Irradiation interne: Le corps humain est radioactif de façon naturelle. La dose efficace annuelle est en moyenne par individu de 1.53 mSv/an. Origine de l’irradiation interne: - principalement par inhalation de radon (1.3 mSv/an), - ingestion (0.18 mSv/an), principalement de potassium 40 (70Bq/kg de lait, 140 Bq/kg de blé, 150 Bq/kg de pommes de terre, 100Bq/kg de viande).

46 Radioactivité de différents milieux naturels.
eau de pluie 0.3 à 1 Bq/l eau de rivière 12 Bq/l eau de mer 14 Bq/l eau minérale 1 à 2 (40) Bq/l lait 60 Bq/l sédiments 400 Bq/kg granit 8000 Bq/kg corps humain 200 Bq/kg

47 b) Irradiation artificielle.
Ces irradiations récentes sont dues à des sources crées par l’homme. - Irradiation médicale. Ce sont des irradiations brèves à débits de dose relativement élevés. La dose efficace annuelle moyenne rapportée par individu est de 1 à 2 mSv/an. Origine: - examens de radiologie - examens de médecine nucléaire - radiothérapie

48 18F-FDG/CT

49 - Irradiation industrielles:
- Irradiation industrielles: Elles sont secondaires à des rejets liquides et gazeux (soumis à autorisation) par les centrales nucléaires et les usines de traitement. La dose efficace annuelle estimée pour les populations à risque est comprise entre et 0.2 mSv/an. Explosions nucléaires. Diffusion dans l’atmosphère de radioélément à demie vie longue. La dose efficace annuelle est de mSv/an. Irradiations domestiques. La dose efficace annuelle est estimée à 0.05 mSv/an. Montres à cadrans lumineux (radium). Ecrans de télévisions: émissions de rayons X de faible énergie. Paratonnerres (radium ou américanium).

50 Plan du cours 1) Généralités sur les RI. 1. 1 Différents types de RI.
1. 2 Unités. 2) Lésions moléculaires. 2.1 Principe général. 2. 2 Radiolyse de l’eau. 2. 3 Effets des RI sur l’ADN. 3) Lésions cellulaires. 3. 1 Mort cellulaire. 3. 2 Retard de mitose. 3. 3 Restauration cellulaire. 4) Effets sur les tissus humains. 4. 1 Effets déterministes. 4. 2 Effets stochastiques. 5) Les différentes sources d’irradiation. 6) Radioprotection

51 Contexte: Exposition constante à de faibles doses Exposition occasionnelle à des doses plus élevées, médicales (radiologie, radiothérapie, médecine nucléaire) Objectifs: Protection des individus contre les effets des rayonnements ionisants (RI) Protection du public et des travailleurs Moyens Mesures réglementaires

52 Quatres principes fondamentaux.
1. Principe de responsabilité: Responsabilité des exploitants pour la sûreté des installations nucléaires, Responsabilité des fournisseurs de sources radioactives Responsabilité des employeurs, Responsabilité du médecin réalisant l’exposition Responsabilité des pollueurs 2. Justification de l’exposition: Évaluation des risques et des bénéfices attendus Prescription médicale motivée obligatoire Le médecin spécialiste est le seul responsable de l’exposition du patient et a le droit de refuser de faire l’examen 3. Principe de limitation des doses: < au doses réglementaires (sauf exposition médicale) 4. Principe d’optimisation (ALARA): l’exposition doit toujours être la plus faible possible

53 Protection des travailleurs
(Décret du 31 mars 2003) Exposition maximale au cours de 12 mois consécutifs - Dose efficace CE : 20mSv - Peau: 500 mSv - Cristallin: 150 mSv - Femme enceinte: < 1 mSv Limites: but = rendre impossible tout effet déterministe et réduire au maximum le risque d’effet stochastique (mais pas de seuil ???)

54 Classement des travailleurs exposés au rayonnements (Décret 2003-296 du 31 mars 2003)
1 mSv 6 mSv mSv Public Catégorie B Catégorie A Exposition indirecte Directement affectées à des travaux sous RI Personnes de Dosimètre individuel 16-18ans

55 Définition des Zones (Décret 2003-296 du 31 mars 2003)
Zone Contrôlée: - Lieu ou l’exposition des travailleurs est susceptible de dépasser les 3/10 - Débit de dose < 25mSv/H tolérance si débit > 25mSv/H => dose sur 1h < 25mSv Zone Surveillée: - Lieu ou l’exposition des travailleurs est susceptible de dépasser les 1/10 - Débit de dose < 7,5mSv/H tolérance si débit > 7,5mSv/H => dose sur 1h < 7,5mSv

56 Trois moyens fondamentaux pour réduire l’exposition
Distance, Temps, Ecran

57 Distance, Temps, écran . . Le débit de dose D varie avec l’inverse du carré de la distance: D(x) = D0/x2 Le débit de dose D est proportionnel à la durée de l’exposition Ecran: D(x) = D0 e-mx, m = coefficient d’atténuation linéique du matériau constituant l’écran Couche de demie-atténuation ou CDA => CDA =ln2/m Blindage des murs, enceintes de manipulation, protège seringue… . . . . . CDA en mm béton acier plomb 99mTc 22 3,2 0,3 131I 40 12,5 3,3 18F 47 15 4,8


Télécharger ppt "Effets biologiques des rayonnements ionisants Radioprotection"

Présentations similaires


Annonces Google