Télécharger la présentation
Publié parBrice Boucher Modifié depuis plus de 10 années
1
Analyse des circuits électriques -GPA Cours #12: Régime permanent sinusoïdal et révision Enseignant: Jean-Philippe Roberge Jean-Philippe Roberge - Janvier 2014
2
Cours #12 Retour sur le cours #11: Théorie du cours #12:
Système de deuxième ordre (suite et fin): Circuit RLC en parallèle: réponse à l’échelon (cas 2) Circuit RLC en série: réponse naturelle (cas 3) Circuit RLC en série: réponse à l’échelon (cas 4) Théorie du cours #12: Sources sinusoïdales Révision des nombres complexes Les phaseurs Impédance Jean-Philippe Roberge - Janvier 2014
3
Retour sur le cours #11 Jean-Philippe Roberge - Janvier 2014
4
Retour sur le cours #11 (1) Nous avions étudié la dynamique de la réponse à l’échelon d’un circuit RLC parallèle: Jean-Philippe Roberge - Janvier 2014
5
Retour sur le cours #11 (2) Nous avions ensuite étudié la réponse naturelle d’un circuit RLC série: En résumé, la forme des équations est la même que dans le cas des circuits RLC parallèle: Sauf que: Jean-Philippe Roberge - Janvier 2014
6
Cours #12 Jean-Philippe Roberge - Janvier 2014
7
Sources sinusoïdales (1)
Une source sinusoïdale est une source (de tension ou de courant) dont la polarité change périodiquement. Par exemple: Graphique d’un voltage alternatif (120 Volts) oscillant à 60Hz. C‘est la forme d’onde délivrée par Hydro-Québec Jean-Philippe Roberge - Janvier 2014
8
Sources sinusoïdales (2)
La valeur d’une source de tension ou d’une source de courant sinusoïdale s’exprime à l’aide de la fonction trigonométrique sinus ou encore cosinus. Rappel: Dans le cadre de ce cours, nous choisirons la fonction cosinus. Source de tension: Source de courant: Jean-Philippe Roberge - Janvier 2014
9
Sources sinusoïdales (3) Valeur RMS (Root Mean Square)
Fréquemment, lorsque l’on travaille avec des sources sinusoïdales, une quantité que l’on étudie est la valeur rms (root mean square). Celle-ci correspond à la moyenne de la valeur absolue de la fonction. Elle est donc définie comme étant la racine carrée de la valeur moyenne du carré de la fonction: Heureusement ceci se simplifie: Jean-Philippe Roberge - Janvier 2014
10
Révision des nombres complexes (1)
Re-voyons un peu la définition des nombres complexes… Un nombre complexe est un nombre qui possède une partie réelle et une partie imaginaire: On peut écrire un nombre complexe sous différentes formes: Jean-Philippe Roberge - Janvier 2014
11
Révision des nombres complexes (2)
Quelques notes sur l’algèbre des nombres complexes: Jean-Philippe Roberge - Janvier 2014
12
Les phaseurs (1) Un phaseur est un nombre complexe représenté à l’aide de la norme et de la phase d’une quantité électrique. On peut représenter une tension ou un courant sinusoïdal par un phaseur ! Le phaseur est utile pour analyser des circuits électriques altenatifs dont toutes les composantes oscillent à la même fréquence. Donc: Jean-Philippe Roberge - Janvier 2014
13
Les phaseurs (2) Analyse de circuit à l’aide des phaseurs (on parle aussi d’analyse dans le domaine fréquentiel): Les lois de Kirchhoff restent les mêmes, c’est-à-dire: La somme des phaseurs de courant entrant dans un noeud = nulle La somme des phaseurs de tension le long d’une boucle = nulle Ainsi, toutes les méthodes d’analyse que nous avons vues avec les circuits DC (sources à valeur constante) s’appliquent aussi aux phaseurs! Jean-Philippe Roberge - Janvier 2014
14
Maintenant que nous avons fait une révision des nombres complexes et que nous avons introduit le concept du phaseur, étudions le comportement des composantes de base que nous avons vus jusqu’à maintenant (résistance, inductance, capacitance) dans le domaine fréquentiel… Jean-Philippe Roberge - Janvier 2014
15
Les phaseurs (3) Résistance dans le domaine fréquentiel
Jean-Philippe Roberge - Janvier 2014
16
Les phaseurs (4) Inductance dans le domaine fréquentiel
Jean-Philippe Roberge - Janvier 2014
17
Les phaseurs (5) Capacitance dans le domaine fréquentiel
Jean-Philippe Roberge - Janvier 2014
18
Impédance et réactance (1)
L’impédance est la généralisation du concept de résistance (circuits résistifs) aux circuits comportant des inductances et/ou des capacitances. Celle-ci s’exprime en Ohm. C’est le ratio du voltage sur le courant à un certain temp t. L’inductance se note Z et elle s’exprime: La partie imaginaire de l’impédance se nomme réactance. Jean-Philippe Roberge - Janvier 2014
19
Impédance et réactance (2)
Circuit RLC: Jean-Philippe Roberge - Janvier 2014
20
Impédance et réactance (3)
Jean-Philippe Roberge - Janvier 2014
21
Impédance et réactance (4)
Jean-Philippe Roberge - Janvier 2014
22
Impédance et réactance (5)
Jean-Philippe Roberge - Janvier 2014
23
Révision Jean-Philippe Roberge - Janvier 2014
24
Circuits d’ordre 1: Réponse naturelle: Circuit RL Circuit RC
Réponse à l’échelon: Circuit RL Circuit RC Jean-Philippe Roberge - Janvier 2014
25
Circuits d’ordre 2: parallèle série
Jean-Philippe Roberge - Janvier 2014
26
Références [1] Présentations PowerPoint du cours GPA220, Vincent Duchaine, Hiver 2011 [2] NILSSON, J. W. et S.A. RIEDEL. Introductory Circuits for Electrical and Computer Engineering, Prentice Hall, 2002. [3] Wildi, Théodore. Électrotechnique, Les presses de l’Université Laval, 3ième édition, 2001 [4] Floyd, Thomas L. Fondements d’électrotechnique, Les éditions Reynald Goulet inc., 4ième édition, 1999 Jean-Philippe Roberge - Janvier 2014
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.