Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parGisèle Robert Modifié depuis plus de 10 années
1
Mission DEMETER Quelques résultats sur lionosphère J.J. Berthelier, T. Onishi, X. Wang*, E. Seran (LATMOS), M. Malingre (LPP) * Maintenant à OCA Atelier Pôle Système Solaire IPSL, Avril 2013
2
Plan 1- DEMETER: objectifs et charge utile scientifiques 2- Recherche deffets pré-sismiques 3- Perturbations induites par les émetteurs VLF 4- Effets dune éclipse dans lionosphère supérieure 5- Perturbations ionosphériques associées aux ondes de gravité 6- Instabilités de lionosphère équatoriale DEMETER
3
Mission et Objectifs Scientifiques - Premier µ-satellite de la famille MYRIADES du CNES - Lancement depuis Baïkonour le 29 juin 2004 par lanceur Dniepr (ex SS19) - Arrêt des opérations 9 décembre 2010 - Plus de 6 ans de bons et loyaux services Objectifs scientifiques de la mission 1- Recherche deffets ionosphériques pré-sismiques 2- Perturbations ionosphériques induites par les activités humaines 3- Physique de lionosphère et météorologie spatiale
4
DEMETER Orbit - Circular at 715 km (later 650 km), 98° inclination, - Quasi helio-synchronous - nodes ascending ~ 22.30 LT, descending ~ 10.30 LT - 3 axis stabilized, X nadir, - Z aligned with orbital velocity
5
DEMETER Orbites et zones de mode Burst
6
DEMETER Recherche deffets pré-sismiques dans lionosphère Analyse statistiques des ondes VLF M 4.8, d 40 km Distribution statistique Sans activité sismique M>5, d 40 km
7
DEMETER Perturbations ionosphériques associées aux émetteurs VLF
8
DEMETER Effets des émetteurs VLF sur les ceintures de radiation
9
DEMETER Eclipse 29 Mars 2006 Effets dans lionosphère supérieure
10
DEMETER Eclipse 29 Mars 2006 Effets dans lionosphère supérieure Observations DEMETER Modélisation SAMI2
11
DEMETER MSTID et ondes de gravité
12
Data comparison at the same conjugate points of different altitudes (300km and 660km)
13
DEMETER Propagation des perturbations dans lionosphère supérieure F-peak 300km DEMETER 660km Ionosphère collisionnelle Ionosphère non collisionnelle 400 km
14
Normal SAMI2 Simulation SAMI2 Simulation with MSTID Difference DEMETER Modélisation ionosphérique SAMI2 The difference of 2 results illustrates a propagation of MSTID perturbation along B- field. Propagation reaches to the other hemisphere.
15
Phase differences of observed parameters and their orders correspond well between the observation and a simulation. DEMETER Comparaison Observations Simulations
16
Ion Acoustic wave in SAMI2 for each ion species SAMI2: Plasma Propagation Propagation speed matches to that of the ion acoustic wave of the major ion species (H+) at high altitudes
17
The Magnetic Storm of November 7 to 10, 2004 Orbits with plasma depletions
21
Nigh-time Orbit 1903 Equatorial Plasma depletion and Plasma waves Electrostatic Turbulence at boundaries Continuous ELF EM emissions Burst of LH turbulence Triggered by whistlers
23
DEMETER orbit F-layer plasma velocity in depletion
26
LH Emissions Solitary Structures
27
1- Bursts of electrostatic LH turbulence triggered by strong whistlers, High intensity, 10 4 µV 2 /m 2.Hz at ω LH Relaxation time ~ 10s 2- Evolve as solitary, monochromatic LH structures Large amplitude (~10 mV/m) wave packets, duration ~ 20 ms, Most often detected in localized density holes (ΔN i /N i ~ -10% to -15%) Interpretation LH turbulence: scattering of whistler waves by pre-existing irregularities (e.g. Bell and Ngo, 1990) LHSS as eigenmodes of cylindrical magnetic field aligned depletions (e.g. Schuck et al., 1998) Lower Hybrid Emissions
28
LH emissions and ion heating
29
Super-thermal ion tails
30
Ion Heating 1- Super-thermal ions detected in deep plasma depletions - simultaneous with LH turbulence and solitary structures - heavy ions O +, NO + 2- No heating of the core ion distribution stays at constant moderate temperature ~ 1200°K 3- Development of a super-thermal ion tail typical: N hot /N cold ~1-5%, T hot ~ 1 to 3 eV (~ 10 to 30 T cold ) Interpretation - Heating by LH solitary waves - Mechanism? resonant interaction unlikely since V LH >>V thi
31
EQUATORIAL PLASMA BUBBLES AND IONOSPHERIC OBSERVATIONS BY DEMETER. Summary of main observations 1- Deep plasma depletions (similar to SIBB, Kil et al., 2003) - consequence of the previous rise of the bottomside F-layer - downward plasma motion and bifurcation 2- ELF EM waves - Magnetospheric Line Radiations - trapped/ducted in deep and large depletions 3- LH turbulence and LHSS - LH turbulence due to scattering of high amplitude whistlers by irregularities - LHSS as eigenmode of magnetic-field aligned small scale irregularities 4- Ion Tail Heating - Interaction with LHSS, but mechanism TBD.
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.