Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parBayard Jourdan Modifié depuis plus de 10 années
1
Quelques méthodes adaptatives de suivi/estimation de fréquences
Estimation de fréquences instantanées de signaux non-stationnaire Cédric Duchêne, Yann Prudat, Laurent Uldry et Jean-Marc Vesin Laboratoire de Traitement des Signaux 1 Rencontres : non-linéaire et bruit
2
Méthodes adaptatives – Pourquoi ?
Motivations identiques à la théorie de l’analyse temps/fréquence Localisation du contenu fréquentiel Signal Densité spectrale de puissance Exemple : deux signaux différents qui possèdent le “même spectre” Rencontres : non-linéaire et bruit
3
Méthodes adaptatives – Pourquoi ?
Problème : interprétation du plan temps/fréquence Trouver des trajectoires dans le plan temps/fréquence Rencontres : non-linéaire et bruit
4
Plan de la présentation
Introduction Signal mono-composante Signal multi-composantes Extension multi-signaux Perspectives & Conclusion Rencontres : non-linéaire et bruit
5
Signal mono-composante - Présentation
Méthode inspirée par les travaux de Liao (2005) mais étendue au cas complexe [ Liao H (2005), IEEE Trans Signal Processing, 53(2), ] Rencontres : non-linéaire et bruit
6
Signal mono-composante - Filtrage
Fonction de transfert du filtre à l’instant n : avec un pole en β G(n), 0 << β < 1, contrôle la largeur de bande fréquence centrale normalisée Rencontres : non-linéaire et bruit
7
Signal mono-composante - Adaptation
Si l’entrée est une composante oscillatoire pure : le signal d’entrée est décrit par l’équation d’un oscillateur complexe Si la fréquence centrale du filtre est : alors la sortie du filtre est définie par équation aux différences défini le pole du filtre Si l’entrée est bruité et que alors Idée : écrire et chercher Rencontres : non-linéaire et bruit
8
Signal mono-composante - Adaptation
On cherche donc une solution à : avec On montre que la solution est unique : néanmoins impossible à déterminer en pratique Estimation par méthode récursive pondérée avec l’estimée de la fréquence instantanée est : Rencontres : non-linéaire et bruit
9
Signal mono-composante - Résultats
Bruit gaussien, SNR 1 dB Bruit gaussien, SNR 1 dB Rencontres : non-linéaire et bruit
10
Plan de la présentation
Introduction Signal mono-composante Signal multi-composantes Extension multi-signaux Perspectives & Conclusion Rencontres : non-linéaire et bruit
11
Signal multi-composantes - Méthode
On suppose maintenant que l’entrée est un signal à p composantes périodiques : Idée : utiliser un filtre adaptatif pour chaque composante banc de filtre adaptatif p branches Problème : les filtres ne sont pas parfaits interférences entre branche (cross-talk) Solution : placer des filtres coupe-bande devant chaque passe-bande Rencontres : non-linéaire et bruit
12
Signal multi-composantes - Méthode
Fonction de transfert : avec p-1 zéros au fréquences : En pratique, les vraies fréquences sont inconnues Utilisation des estimées Rencontres : non-linéaire et bruit
13
Signal multi-composantes - Résultats
Bruit gaussien, SNR total 20 dB Rencontres : non-linéaire et bruit
14
Plan de la présentation
Introduction Signal mono-composante Signal multi-composantes Extension multi-signaux Perspectives & Conclusion Rencontres : non-linéaire et bruit
15
Extension multi-signaux - Méthode
Cas où l’information utile provient de M capteurs Idée : estimer conjointement les fréquences instantanées plutôt que de faire les estimations séparément Comment : utiliser le même banc de filtre adaptatif pour tous les signaux, et mettre à jour les paramètres de manière pondérée en privilégiant les signaux respectant au mieux le critère d’oscillation Rencontres : non-linéaire et bruit
16
Extension multi-signaux - Exemple
Rencontres : non-linéaire et bruit
17
Perspectives & Conclusion
Cas mono-composante : analyse de la convergence biais et variance de l’estimation Cas multi-composantes : comprendre avantages/inconvénients de la méthode dans le cas réel et dans le cas complexe intérêt d’avoir des largeur de bande variable (adaptative) estimer le nombre de composantes afin de modifier la taille du filtre pendant le traitement (naissance et mort de processus) Rencontres : non-linéaire et bruit
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.