Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parConstantin Courtois Modifié depuis plus de 10 années
1
Exercice I Exercice II
2
Exercice II (suite)
3
Exercice III
4
Exercice IV
5
Exercice V
6
d)
7
On prend la moyenne L= (L 1 + L 2 )/2 = 12.87 mm On estime lécart type simplement par lécart des 2 mesures à la moyenne =0.01 L= résolution + dispersion = ½ 0.01 + 2X = 0.025 Pour une estimation on écrira donc : L = (12.87 ±0.03) mm Pour plus de rigueur, on pourrait aussi faire n>10 mesures, calculer et, … Exercice VI Exercice VII
8
V = ± 0,8 % valeur lue + 2 digits V = (0.8/100x0.385) + (2x0.001) V V = 5.1 10 -3 V (1.3 %) Exercice VII
10
On trace les points munis de leur incertitude et à « lœil » la droite quon estime la « meilleure ». Le dernier point est sensiblement éloigné comparativement aux autres… La droite passe par tous les points munis de leur incertitude. Le modèle exponentiel est donc validé.
12
On trace les droites en X passant par les «extrêmes » figurés par des cercles. Mais cette représentation nest pas satisfaisante car la meilleure droite ne passe pas au milieu du X
13
Voilà qui est mieux…
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.