Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parAchille Renaud Modifié depuis plus de 10 années
1
Les prévisions et la gestion de la demande
Cours #4
2
La nature de la prévision et de la gestion de la demande
Une bonne gestion et la prise de décision adéquates nécessitent la connaissance des demandes à satisfaire. La demande n’est pas toujours connue à l’avance.
3
La nature de la prévision et de la gestion de la demande
Pour prévoir la demande, il faut utiliser des méthodes qui tiennent compte: des tendances passées des facteurs pouvant l’influencer de l’analyse des données connues (commandes déjà entrées). C’est ce qu’on appelle la prévision. La prévision est une étape nécessaire devant précéder la planification des opérations.
4
La gestion de la demande
La gestion de la demande consiste à: Déterminer la demande totale à satisfaire et à la faire connaître au moment voulu et selon des formes précises aux gestionnaires concernés (production, marketing).
5
Quelles sont les responsabilités du groupe qui s’occupe de la gestion de la demande?
Collecte des données sur tous les types de demande que l’entreprise doit satisfaire. Agrégation de ces demandes et la communication des résultats aux services concernés pour avoir une idée globale des besoins en ressources.
6
Quelles sont les responsabilités du groupe qui s’occupe de la gestion de la demande?
Conception et mise en œuvre de moyens permettant d’adapter la demande pour la rendre plus acceptable, dans le cas où cette dernière poserait des difficultés. Établissement des délais de livraison réalistes et contrôle du respect des délais.
7
Dans quels contextes les prévisions sont-elles utiles?
Adoption d’une technologie nouvelle. Modification de la capacité. Gestion de l’équipement. Localisation et l’aménagement. Gestion des stocks. Planification intégrée. Gestion stratégiques des opérations.
8
Quelles sont les règles d’utilisation de la prévision de la demande?
1) La prévision doit porter sur la demande indépendante (produits finis). 2) La prévision peut être faite sur des familles de produits ou des produits individuels.
9
Quelles sont les règles d’utilisation de la prévision de la demande?
3) La prévision doit être faite à court ou moyen terme seulement. 4) Il faut prendre en considération la part d’incertitude dans l’utilisation des prévisions.
10
Facteurs à considérer lors du choix d’une méthode de prévision
Variables à prévoir coûts d’une méthode de prévision le genre de données la disponibilité des données l’importance de la prévision coût de la cueillette des données les facteurs qui influencent la variable à prévoir temps et ressources requises pour obtenir les prévisions nombre de variables à prévoir les usagers des outils de prévisions lien entre états passés et états futurs de la variable à prévoir fréquence à laquelle les prévisions doivent être faites Prévisions
11
Techniques de prévision
Méthodes qualitatives Méthodes quantitatives
12
Méthodes qualitatives
Dans quelles circonstances les méthodes qualitatives sont-elles appropriées? si aucune donnée chiffrée n’est disponible. si les données passées sont non fiables. s’il y a des changements majeurs dans les valeurs et les comportements qui empêchent l’utilisation des données existantes.
13
Quelles sont les méthodes qualitatives?
1. Étude de marché 2. Prévisions visionnaires 3. Méthodes Delphi 4. Analogie historique
14
1. Étude de marché Questionnaires, contacts par téléphone, entrevues personnelles ou du personnel clé pour amasser des données. Utilisées surtout en planification stratégique, par exemple, pour information sur de nouveaux produits.
15
1. Étude de marché Une analyse statistique des résultats peut être faite pour tester des hypothèses concernant le comportement des consommateurs. Méthode coûteuse à cause du personnel requis, de la poste, etc. Peut être sujet à un biais élevé.
16
2. Prévisions visionnaires
Basées sur la préparation de prévisions par les vendeurs selon leurs connaissances du marché, du terrain et de leurs clients.
17
3. Méthode Delphi Se base sur l’opinion de groupes d’experts et vise l’obtention d’un consensus. Les experts sont interrogés individuellement, donc pas de lien entre eux. Ils peuvent être requestionnés itérativement jusqu’à ce qu’un consensus soit atteint. Pratique pour la prévision à long terme et pour prédire les changements technologiques.
18
4. Analogie historique Ex.: Courbe du cycle de vie pour différents produits similaires
19
Méthodes quantitatives
Deux types de méthodes: 1- Méthodes causales 2- Méthodes des séries chronologiques
20
1. Méthodes causales Utilisées pour mettre en relation les facteurs explicatifs qui influencent l’évolution d’une variable à prévoir. Exemples: population, localisation géographique, niveau d’éducation, âge, etc.
21
1. Méthodes causales Chaque facteur a une importance et un effet qui doivent être évalués pour expliquer comment les variables de prévision ont pu être modifiées dans le passé. Un modèle de prévision est construit qui intègre les facteurs appropriés.
22
2. Méthodes des séries chronologiques
Elles s’intéressent aux liens entre les valeurs passées de la variable à prévoir. Un modèle mathématique basé sur l’évolution passée de la variable de prévision est déterminé.
23
Le choix d’un modèle de prévision devrait dépendre de :
1. Horizon de planification 2. Disponibilité des données 3. Précision requise 4. Taille du budget affecté à la prévision 5. Disponibilité du personnel qualifié
24
Méthodes causales 1. Régression linéaire
Cette méthode permet d’établir un modèle mathématique linéaire qui exprime une variable dépendante en fonction d’autres variables, dites indépendantes.
25
Méthodes causales 2. Régression multiple et modèles économétriques Cette méthode est analogue à celle de régression linéaire sauf qu’elle peut présenter une dépendance à plusieurs variables indépendantes combinées. Cela donne un modèle qui n’est pas linéaire. Lorsque plusieurs équations de régression doivent être résolues en même temps modèles économétriques
26
Régression linéaire simple
Le modèle de la régression linéaire simple est de la forme: Yt = a + b Xt où Yt est la variable dépendante et Xt la variable indépendante.
27
Régression simple où sont les moyennes respectives des n observations des X et des Y
28
Régression simple a et b sont obtenus par les équations normales de la méthode des moindres carrés. Cette méthode tente de trouver la droite représentant le mieux les données en minimisant la somme des carrés de la distance verticale entre chaque point et son point correspondant sur la droite.
29
Régression simple Les désavantages de cette méthode sont que les données devraient se rapprocher d’une droite. Ceci limite son utilité. Par contre, si on considère une période de temps plus courte, la régression simple peut être adéquate.
30
Régression simple La régression simple est utilisée principalement comme méthode causale. En séries chronologiques, les résultats sont moins adéquats. Si la variable dépendante change à cause du temps analyse de séries chronologiques.
31
Exemple 1 Le tableau suivant présente les données et les calculs nécessaires pour faire des prévisions.
32
Exemple 1 (suite) Quelle est l’équation de régression pour ce problème?
33
Les séries chronologiques
Les méthodes statistiques de prévision se basent sur l’analyse de données historiques appelées les séries chronologiques. Une série chronologique est un ensemble d’observations faites à différentes périodes successives dans le temps.
34
Qu’est-ce qu’une série chronologique …
Périodes ? Demande Série chronologique ou série temporelle ou série de consommations
35
Série chronologique … Xt, t = 1, …, T
36
Le processus de prévision …
37
Voici quelques comportements de séries chronologiques
linéaire courbe en S linéaire décroissante cycle exponentielle asymptotique cycle avec tendance
38
Étapes de la méthode des séries chronologiques
1. Collecte des données cueillette d’observations sur les valeurs de la variable de prévision sur plusieurs périodes. mettre de côté les données non représentatives (ex.: lors de grève.)
39
Étapes de la méthode des séries chronologiques
2. Analyse des données définir le modèle sous-jacent représentant le mieux l’évolution de la demande passée par: i) technique de l’observation visuelle ii) technique d’analyse d’autocorrélation des données (permet de mesurer l’importance du degré de relation des observations entre elles.)
40
Étapes de la méthode des séries chronologiques
3. Choix de la meilleure méthode de prévision test systématique des méthodes se rapportant au modèle sous-jacent choisi. étude des résultats obtenus à l’aide d’une technique qu’on verra plus tard (mesures d’erreurs.
41
Étapes de la méthode des séries chronologiques
4. Obtention des prévisions utiliser les équations déterminées précédemment pour déterminer les prévisions.
42
Modèle avec niveau constant
Une étude est faite de l’évolution aléatoire des données observées autour d’une valeur centrale stable dite niveau. Le niveau correspond en fait à une moyenne demande x x x x x x x niveau x x x x x x x x temps
43
Différentes façons d’établir ce niveau
Moyenne statistique Moyenne mobile Moyenne pondérée Lissage exponentiel
44
La valeur du niveau est égale à la moyenne des observations retenues.
Moyenne statistique La valeur du niveau est égale à la moyenne des observations retenues. où = moyenne statistique au temps t Xi = valeur observée au temps i n = #observations
45
Moyenne statistique (suite)
La prévision P de la demande pour les périodes futures j est donnée par La prévision est donc la même pour toutes les périodes à venir.
46
Moyenne mobile Pour cette moyenne, seules les observations les plus récentes sont utilisées pour calculer la prévision. Cette méthode nécessite de conserver un grand nombre de données en mémoire.
47
Moyenne mobile (suite)
Les prévisions se calculent de la façon suivante où m = #observations considérées (ordre de la moyenne mobile) t = la dernière période pour laquelle nous considérons une observation
48
Exemple 2 Nous avons les données suivantes concernant les ventes en 1000 gallons d’essence par semaine. Considérons une moyenne mobile basée sur 3 observations. Quelles sont les prévisions des semaines 4 et 5? Quelle serait la prévision pour la semaine 7?
49
Lissage exponentiel simple
Cette méthode permet de calculer une moyenne pondérée qui tient compte du poids attaché aux observations, le poids s’estompant quand on avance dans le temps. Cette méthode est une des plus utilisées.
50
Lissage exponentiel simple
Soient Pt = prévision au temps t. Xt = observation au temps t. a = facteur de pondération compris entre 0 et (appelé aussi constante de lissage)
51
Lissage exponentiel simple
La prévision au temps Pt se calcule ainsi: Pt = a Xt-1 + a(1-a) Xt-2 + a(1-a)2 Xt-3 +…+ a(1-a)n-1 Xt-n Cette formule se réécrit sous la forme Pt = a Xt-1 + (1-a) Pt-1= Pt-1 + a (Xt-1- Pt-1)
52
Lissage exponentiel simple
Trois types de données sont nécessaires pour appliquer la méthode: 1) La prévision pour la période précédente. 2) La demande réelle pour cette même période. 3) Facteur de pondération a
53
Exemple 3 Une firme utilise un lissage exponentiel simple avec un coefficient a de 0,1 pour prévoir une demande. La prévision pour la première semaine de février était de 500 unités alors que la demande réelle était de 450. Prévoyez la demande pour la semaine du 8 février.
54
Exemple 4 Considérons les valeurs observées suivantes pour les 12 prochaines périodes. Soit a=0,1 et 0,3. Quelles sont les prévisions pour les périodes 1 à 13?
55
Exemple 4 (solution)
56
Lissage exponentiel simple
Le facteur de pondération, a, détermine le niveau de lissage et la vitesse de réaction à la différence entre la prévision et la demande réelle. Le choix de a dépend de l’allure de la demande. Initialisation 2/a - 1
57
Raisons pour expliquer le succès des méthodes de lissage exponentiel
1) Le modèles sont assez précis. 2) La formulation des modèles se fait aisément. 3) L’utilisateur peut comprendre comment le modèle fonctionne. 4) Le modèle requiert peu de calculs.
58
Raisons pour expliquer le succès des méthodes de lissage exponentiel:
5) Le modèle requiert peu d’espace-mémoire car on n’a pas besoin de conserver beaucoup de données passées. 6) Les tests pour vérifier comment le modèle se comporte sont faciles à calculer.
59
Modèle avec tendance Pour ce type de modèle, on ne considère plus une moyenne stable mais plutôt la tendance de la demande en fonction du temps. En fait, la moyenne ne peut nous être utile dans ce cas.
60
La mesure de la tendance =
Ampleur de la variation moyenne observée d’une période à l’autre.
61
Mesure de la tendance demande tendance x x x x x x x x x x x temps
62
Modèle avec cycle Ici, la demande ne varie pas de façon constante. On ne peut donc plus parler de tendance linaire comme le modèle précédent. La demande varie de façon cyclique ou saisonnière. Le cycle est décelable par visionnement des données ou par l’analyse de l’autocorrélation.
63
Modèle avec cycle demande demande cycle seulement cycle + tendance
x x x x x cycle + tendance x x x x x x x temps temps
64
4 méthodes de prévisions pour demandes cycliques
Lissage exponentiel à deux ou trois paramètres Décomposition classique Régression multiple Recherche des harmoniques
65
Choix de la meilleure technique de prévision
Principales mesures d’erreurs La meilleure méthode de prévision doit donner les prévisions les plus précises possibles. Pour évaluer une méthode, on se base sur les erreurs de prévision passées.
66
Principales mesures d’erreurs
L’écart entre une donnée passée et la prévision faite par le modèle pour la période correspondante est mesuré pour s’assurer de la justesse du modèle. Les différentes mesures que nous allons voir peuvent être évaluées pour différentes méthodes. La méthode donnant les meilleurs résultats serait la plus appropriée.
67
Différentes mesures d’écart
Écart quadratique moyen Écart absolu moyen Écart absolu moyen en % Biais
68
Écart quadratique moyen
L’écart quadratique moyen se calcule ainsi où Pi = valeur prévue et Xi = valeur réelle.
69
Écart absolu moyen Ce type de mesure d’erreur tient compte des écarts sans égard au signe des valeurs. L ’écart absolu moyen se calcule ainsi
70
Erreur absolue moyenne
Par ailleurs, l’erreur absolue moyenne en % se calcule un peu différemment que l’écart absolu moyen.
71
Biais ou erreur moyenne
Pour le calcul du biais, les écarts tiennent compte du signe des valeurs i.e. négatifs ou positifs. Le biais devrait être près de 0.
72
Biais ou erreur moyenne
Si le biais est > les prévisions ont tendance à dépasser les valeurs réelles. Si le biais est < les prévisions ont tendance à être sous les valeurs réelles. Si et = Pt - Xt
73
Biais ou erreur moyenne
Le biais se calcule ainsi
74
Exemple 5 Considérons les données sur les ventes du modèle d’automobile Z pour les années 1974 à Les prévisions obtenues à l’aide de la méthode du lissage simple et à l’aide d’une régression linéaire sont également données.
75
Exemple 5 (suite) Calculez les différentes mesures d’erreur.
Quelle méthode de prévision est la meilleure?
76
Solution, LE
77
Solution, régression
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.