La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Points essentiels Quantité de mouvement; Impulsion;

Présentations similaires


Présentation au sujet: "Points essentiels Quantité de mouvement; Impulsion;"— Transcription de la présentation:

1

2 Points essentiels Quantité de mouvement; Impulsion;
Conservation de la quantité de mouvement; Les collisions; Le moment d’inertie; Le moment cinétique.

3 Quantité de mouvement Tout corps en mouvement possède de façon intrinsèque une quantité de mouvement: en effet, tout corps, de par sa nature même, possède une masse m (en kilogramme) et, s’il est en mouvement, une vitesse v (en mètre/seconde).

4 Quantité de mouvement (Linéaire)
Mesure de la quantité de mouvement d’un objet formule p = m x v unités = kg x m/s = kg m s

5 Quantité de mouvement vs. masse (inertie)
p = m x v p µ m ­ m = ­ p ¯ m = ¯ p Relation directement proportionnelle

6 Quantité de mouvement vs. vitesse
p = m x v p µ v 100 km/hr ­ v = ­ p 50 km/hr ¯ v = ¯ p Relation directement proportionnelle

7 Quantité de mouvement Exemple 1
Calculez la quantité de mouvement d’un chariot de 8,8 kg se déplaçant à une vitesse de 1,24 m/s? p = ?? 8,8 kg = masse 1,24 m/s = vitesse p = m x v = 8,8 kg x 1,24 m/s = 10,912 kg m/s = 10,9 kg m/s

8 Quantité de mouvement Exemple 2
Calculez la vitesse d’une voiture de 3,5x104 kg qui possède une quantité de mouvement de1,4x105 kg m/s? vitesse = ?? 3,5x104 kg = masse 1,4x105 kg m/s = p p = m x v v = p / m = 1,4x105 kg m/s / 3,5x104 kg = 4,0 x 100 m/s = 4,00 m/s

9 Impulsion Qu’est-ce qui fait qu’un corps possède une quantité de mouvement? Cette question est équivalente à se demander comment un corps de masse m peut-il posséder une vitesse v? Pour qu’un corps acquière une vitesse, il faut l’accélérer, donc il doit subir l’effet d’une force nette! est appelé l’impulsion que le corps a reçue. Une impulsion est équivalente à une modification de la quantité de mouvement d’un corps.

10 Exemple Un électron dont la vitesse est de 3 ×106 m/s est absorbé dans l’épiderme d’un patient. Quelle impulsion a subi cet électron? Solution L’impulsion est égale à la variation de sa quantité de mouvement, d’où: FDt = mDv = (9,11×10–31kg)(–3×106m/s) = 2,70×10–24 kg·m/s .

11 Conservation de la quantité de mouvement
Si la force extérieure résultante sur un système est nulle, la quantité de mouvement est constante.

12 Collisions La quantité de mouvement s’avère une notion très utile dans l’étude de collisions entre 2 corps.

13 Les types de collisions
Précisons d’abord qu’il existe plusieurs types de collisions: 1- Collisions parfaitement inélastiques: les 2 corps demeurent liés après la collision avec perte d’énergie cinétique totale, mais conservation de la quantité de mouvement. 2- Collisions inélastiques: les 2 corps se séparent avec perte d’énergie cinétique totale, mais conservation de la quantité de mouvement. 3- Collision élastiques: les 2 corps se séparent sans perte d’énergie cinétique totale, et toujours conservation de la quantité de mouvement . Dans tous les cas, la quantité de mouvement totale est CONSERVÉE.

14 Exemple m1v1= 1kg m/s m2v2 = 0 m1v1 = 0 m2v2= 1kg m/s
Avant la collision Lors de la collision Après la collision m1v1 = 0 m2v2= 1kg m/s

15 Autre exemple Un chariot de 5 kg à la vitesse de 2 m/s vient frapper un second chariot de 7 kg, initialement au repos. Si la collision est parfaitement inélastique, quelle sera la vitesse de l’ensemble après la collision ? Quelle est la perte d’énergie cinétique pendant cette collision ? 7 kg 5 kg v1 = 2 m/s v2 = 0 m/s

16 Solution Calcul de la vitesse de l’ensemble après la collision
La quantité de mouvement totale du système avant la collision est: Puisque la collision est parfaitement inélastique, les 2 chariots demeurent accrochés ensemble après la collision et leur vitesse v' est commune. Alors: et:

17 Solution (suite) Calcul de la perte d’énergie durant la collision
L’énergie totale du système avant la collision est: L’énergie totale du système après la collision est: La variation d’énergie cinétique durant la collision est donc: DK = Kf– Ki = 4,16 J – 10,0 J = –5,8 J Soit une perte de 5,8 Joules !

18 Moment d’inertie Le moment d’inertie d’un corps mesure son inertie de rotation, c’est-à-dire sa résistance à toute variation de sa vitesse angulaire. 0,4 MR2 0,5 MR2 MR2

19 Moment cinétique Unités: kg.m2/s
L’analogue de la quantité de mouvement en rotation porte le nom de moment cinétique (ou quantité de mouvement angulaire). Unités: kg.m2/s

20 Conservation du moment cinétique
Les patineurs connaissent l’importance du moment cinétique et du moment d’inertie. Lorsqu’ils s’élancent pour se mettre à tourner, ils étendent les bras dans leur élan, puis, en ramenant leurs bras vers le centre, ils diminuent leur moment d’inertie, ce qui a pour effet d’augmenter leur vitesse angulaire, selon le principe de conservation du moment cinétique:

21 Exercices suggérés 0901, 0902, 0903, 0904, 0907 et 0909


Télécharger ppt "Points essentiels Quantité de mouvement; Impulsion;"

Présentations similaires


Annonces Google