Télécharger la présentation
Publié parOtes Dos santos Modifié depuis plus de 10 années
1
Physique mécanique Dynamique de rotation (2) Par André Girard
203-NYA-05 Physique mécanique Dynamique de rotation (2) Par André Girard 1
2
Récapitulons jusqu’ici l’étude du membre de gauche de
la deuxième loi de newton exprimée en rotation. Moment de force défini Application dans des situations d’équilibre de rotation Il nous reste à comprendre le membre de droite de la deuxième loi de newton exprimée en rotation. Puis d’appliquer dans des conditions de déséquilibre de rotation 2
3
Inertie de Rotation ou moment d’Inertie
Tendance d’un corps de s’opposer à la rotation autour d’un axe choisi Une petite fusée de masse (m) est fixée solidement sur une tige rigide de masse négligeable à une distance (R) du centre de rotation. Que se passe-t-il instantanément si on actionne son moteur qui fournit une force de propulsion constante faisant toujours un certain angle par rapport à la trajectoire circulaire ? Fusée considérée comme masse ponctuelle F R F Sin R F Cos Donc ici ---> I = m R2 Attention : Pour une masse ponctuelle seulement 3
4
Disque plein Cylindre plein Rondelle Poulie réelle Volant d’inertie
Si la masse était homogène et répartie uniformément !! Disque plein Cylindre plein Rondelle Poulie réelle Volant d’inertie 4
5
Autres configurations
Maintenant applications dans des situations en déséquilibre de rotation 5
6
N N = Mg + F Cas # 1 Une vraie poulie
Une poulie réelle de masse M et de rayon R est fixé en son centre (roulement à bille donc frottement négligeable pour l’axe) sur un socle vertical et on enroule autour la poulie un câble au bout duquel se trouve une poignée. Déterminez la vitesse angulaire de la poulie après qu’elle ait effectué 2 tours si on tire sur la poignée en maintenant une force constante F ? Phases de MICO: Sico Cerclo Interacto Equo-G Equo-P N R M N = Mg + F Mg F = cte 6
7
Allez-y ? Cas # 2 Poulie réelle
Une corde de masse négligeable est enroulée autour d’une poulie de masse M et de rayon R et on attache à son extrémité une petite charge de masse m. Déterminez son accélération si on laisse le système à lui-même ? (Frottement toujours négligeable sur l’axe de la poulie) Phases de MICO: Sico Cerclo Interacto Equo-G Equo-P Allez-y ? R M m 7
8
Finalement Équil. Vertical
Interacto N R M m Relation entre linéaire et angulaire Donc T=Ma/2 Mg T T a mg Finalement Équil. Vertical N = Mg + T 8
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.