La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Stéphane Abel, Massimo Marchi CEA, DSV/iBiTeC-S/SB2SM/LBMS, Saclay

Présentations similaires


Présentation au sujet: "Stéphane Abel, Massimo Marchi CEA, DSV/iBiTeC-S/SB2SM/LBMS, Saclay"— Transcription de la présentation:

1 Stéphane Abel, Massimo Marchi CEA, DSV/iBiTeC-S/SB2SM/LBMS, Saclay
Simulations de dynamique moléculaires des détergents: Applications à l’étude des micelles directes d’acide gras et de glycolipides Stéphane Abel, Massimo Marchi CEA, DSV/iBiTeC-S/SB2SM/LBMS, Saclay GDR 2748 Protéines membranaires. Les Houches Mars 2009

2 Avant propos Les simulations de dynamique moléculaires sont des outils de choix pour étudier la structure des détergents en solution (et notamment des micelles) : plus de 500 articles depuis la fin des années 80 (source web of science). Deux exemples pour ce GDR de simulations de dynamique moléculaires appliquées à l’étude structurale : Des micelles d’acide linoléique utilisées dans les études de radiolyse: Examen de l’influence des conditions initiales. Des micelles de dodecyl maltoside utilisées dans la solubilisation douce des protéines membranaires: Examen de l’influence de la conformation des têtes polaires sur la structure des micelles

3 Les micelles d’acide linoléique
En bref: L’acide linoléique (AL) est un acide gras -6 avec 18 carbones Sphériques en solution aqueuse (cmc = 2mM à pH=11.5) de dimension RM≈ Å (cryo-TEM ou SANS) Template pour la formation de nanoparticules métalliques par radiolyse. Peu d’autres données structurales pour modéliser les micelles d’AL (et notamment Nagg) Utilisation d’un modèle géométrique pour le choix de Nagg et de RM Considérant que xCH2*Nagg (avec 0 < xCH2 < 17) , Sh=21 Å2 et L = 23 Å Volume et surface de la micelle : Fraction de surface hydrophile de la micelle: Différentes simulations avec Nagg = 50, 60, 75, 90, meilleurs accords pour Nagg = 60, RM = 19.4 Å et f = 26.6 %

4 Détails des simulations
Deux protocoles de simulation: préformée et self-assemblée 60 molécules de LIN, 60 Na+ et 9997 mol. d’eau TIP3 pour [LIN]=0.3 M Système préformée (M60-P): Micelle manuellement construite est placée dans une boite d’eau octaédrique tronquée (a=b=c=75 Å and =β=γ= o) Système self-assemblée (M60-S): les molécules de LIN et de Na+ sont placées aléatoirement dans une boite cubique d’eau avec a = 69 Å Simulations avec le code ORAC dans les conditions NPT (P= 0. 1 MPa et T= 300 K) avec prise en compte de l’électrostatique et des conditions périodiques. Champs de CHARMM27 avec les paramètres de torsions en cis pour les molécules de LIN. Association des molécules d’AL en micelles (M60-S) Processus d’agrégation en 2 étapes rapides et lentes.

5 Comparaison entre les micelles préformées et self-agrégées
Preformed (M60-P) t = 10 ns Self-assembled (M60-S) t = 31 ns M60-P Système a/c RM (Å) f(%) ncoo-OW Geom. Model - 19.4 26.6 Exp. (SANS) M60-S 1.24 19.0a (24.6b) 28.0 M60-P 1.23 26.5 M60-S f : fraction de surface hydrophile de la micelle sur la surface totale. nhg-OW: nombre moyen d’hydratation.

6 Conclusions Processus d’agrégation des molécules en micelle de LIN, rapide ( < 10 ns) effectuée en deux étapes, rapide et lente (gouvernées par l’effet hydrophobe) Pas d’influence des conditions initiales sur la structure des micelles Micelle légèrement ellipsoïdale (a/c=1.2) de dimension RM20 Å avec une structure interne similaire et une surface très majoritairement hydrophobe (f = 26.5 – 28 %) Proposition d’un model de structure pour les micelles d’acide linoléique dans l’eau Perspectives: Comparer la structure des micelles en présence de sel d’Ag+

7 Les alkyls glycosides En bref: Présent dans les membranes cellulaires
Biodégradables et non toxiques. S’assemblent en différentes structures (micelles, membranes) Utilisation courante pour l’extraction et la solubilisation des protéines membranaires permettant de garder intact leur activité fonctionnelle. β-Octyl-Glucoside (OG) β-Dodecyl-Maltoside (β-DDM) Tiré de Walian et al. (2004)

8 Le dodecyl maltoside (DDM)
A deux anomères ( et ) avec des propriétés différentes: CMC: 1.5 x 10-4 mol.l-1 () et 2.0 x 10-4 mol.l-1 () Petites micelles sphériques avec la forme  (NDDM75-80) alors que  forme des micelles oblates (NDDM ) Micelles quasi-sphériques pour  et oblates pour  Peu d’informations sur la structure des micelles en solution aqueuse (essentiellement SANS et SAXS). Motivations de l’étude Construction d’un model moléculaire du détergent DDM pour simuler les interactions proteine-peptide/glycolipides. Examen l’influence de la conformation de la tête polaire sur la structure des micelles.

9 DM de micelles avec les deux anomères de DDM
Les simulations 2 tailles de micelles pré-assemblées avec nombre d’agrégation (NDDM) issus de SAXS et SANS (Dupuy et al. 1997) Champs de force tirés de CHARMM (chaine alkyl et tête polaire maltose) Modèle d’eau TIP3 Conditions périodiques, SPME Simulations NPT (P = 0.1 MPa et T = 297 K) avec le code ORAC tsim =240 fs Système -DDM -DDM NDDM 75 132 NH2O 13771 18389 Natm. 47388 65859 mH2O/mT (%) 86.6 83.1 T (K) 297 [DDM] (M) 0.26 0.33 tsim (ns) 14.0 tsim =7 ns tsim =14 ns -DDM -DDM

10 Dimensions des micelles
<Rg> =26.5 ± 0.1 Å Rgexp = 23.5 ± 1 Å β-DDM Réarrangement des glycolipides -DDM <Rg> =20.5 ± 0.1 Å Rgexp = 18.5 ± 1 Å

11 Paramètres de forme des micelles
at acec ac at ac atet System Région a (Å) b (Å) c (Å) ell. a/c -DDM Micelle Exp.a Core Exp. a 28.8 ± 0.7 24.0 ± 1.0 21.9 ± 0.8 18.6 ± 1.0 26.6 ± 0.6 19.2 ± 0.6 23.9 ± 0.5 16.5 ± 0.6 0.82 1.00 0.75 1.20 ± 0.04 1.33 ± 0.10 <lpl> (Å) 6.9 (5.4) 7.4 (5.4) -DDM 38.4 ± 0.8 34.4 ± 1.0 32.1 ± 0.8 28.2 ± 1.0 35.2 ± 1.6 27.3 ± 1.6 28.5 ± 1.1 20.3 ± 1.0 19.9 ± 1.1 14.1 ± 1.0 0.74 0.59 0.62 0.50 1.35 ± 0.07 1.70 1.61 ± 0.13 2.00 6.3 (6.2) 7.9 (6.2) 8.6 (6.2) lpl a, b, c = Micelle a, b, c - Core a, b, c <lpl a, b, c> -DDM = 7.2 Å <lpl a, b, c> -DDM = 7.6 Å a Dupuy et al., 1997

12 Structure internes des micelles
-DDM β-DDM

13 Hydratation des têtes polaires
Système ASAM (Å2) ASADDM (Å2) fTail (%) Ahrg (Å2) Ahexp(Å2) -DDM 18404 245.4 ± 5.5 9.4 ± 0.1 70.5 ± 0.6 58 -DDM 32705 248.8 ± 3.7 9.8 ± 0.1 67.1 ± 0.8 52 g(r) -DDM -DDM O1-Ow 0.2 0.4 O2-Ow 2.2 2.5 O3-Ow 3.5 3.3 O4-Ow 1.9 2.3 O5-Ow 2.1 O6-Ow 2.7 2.6 O7-Ow 0.6 0.8 O8-Ow 1.8 2.4 O9-Ow 2.0 O10-Ow O11-Ow Total 19.9 21.2 Mol. H2O d’hydratation unique System -DDM -DDM nwall 12.9 ± 0.2 12.6 ± 0.2 nwhead 12.4 ± 0.2 12.8 ± 0.1 nwGlcA 9.9 ± 0.2 9.7 ± 0.3 nwGlcB 2.5 ± 0.3 3.1 ± 0.3 nwtail  0 Nwall Exp  8-14 Nwhead Exp  8 Warr, 1986; Cecutti et al et Dupuy et al. 1997

14 Diffusion de translation de l’eau interfaciale
Bulk TIP3 -DDM β-DDM wb System α w (ps) w /w b -DDM 0.49 13.6 4.8 -DDM 0.45 14.4 5.2 Bulk TIP3 1.00 2.8 1.0

15 Propriétés de survie de l’eau de solvatation
System ns s (ps) n1 1 (ps) <s> -DDM 700.8 4.7 0.36 310 5.4 21.3 -DDM 1197.2 6.9 0.35 493.2 5.2 35.0

16 Dipole-dipole Relaxation de l’eau de solvatation
First rank System r1 (ps)  (A2) <r1> (ps) -DDM 6.4 0.47 14.5 -DDM 6.7 15.1 Bulk TIP3 - 1.9 Second rank System r2 (ps)  (A2) <r2> (ps) -DDM 0.94 0.43 2.58 -DDM 0.97 0.42 2.80 Bulk TIP3 - 0.64

17 Bibliothèque de paramètres pour les glycolipides à base de glucose
(en coll. F.Y Dupradeau, UMR6219, Université d’Amiens) Charges partielles pour 24 glycolipides courants compatibles avec GLYCAM/AMBER

18 Conclusions Micelles de dodecyl maltoside:
Dimensions des micelles (Rg = 20.5 et 26.5 Å) proches de celles obtenues expérimentalement pour des micelles de -DDM et β-DMM Micelle avec β-DMM plus ellipsoïdale (a/c =1.35) que la micelle avec -DMM en accord qualitatif avec les données expérimentales. Peu de changement dans l’hydratation des têtes polaires des glycolipides Dynamique de l’eau interfaciale ralentie environ 5 fois par rapport à l’eau pure et ne varie pas avec la conformation des têtes polaires des molécules de DDM Perspectives Comparaison avec un autre champ de force (GLYCAM d’AMBER): en cours

19 Merci pour votre attention !!!


Télécharger ppt "Stéphane Abel, Massimo Marchi CEA, DSV/iBiTeC-S/SB2SM/LBMS, Saclay"

Présentations similaires


Annonces Google