Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
1
La tête dans les étoiles
Partie 2 Pascal Chardonnet Université de Savoie & LAPTH
2
Le transfert d’énergie dans le Soleil
Cœur: réactions nucléaires R < 0.25RSoleil 2 Transfert par radiation 0.25RSoleil<R < 0.75RSoleil Transfert par convection 0.75RSoleil<R < RSoleil Photosphère : partie visible T=6000 K km L’énergie est libérée sous forme de photons (grains de lumière) et de neutrinos
4
Luminosité = 400 milliards de milliards de mégawatts
Notre étoile le Soleil Pendant combien de temps va-t-il briller ? Luminosité = 400 milliards de milliards de mégawatts 3.8 x 1026 W Fraction de masse convertie en énergie = (4mp-mHe)/mp=0.007 Energie disponible = 0.007x0.1x2x1030x(3x108)2=1.3x1044J Durée de vie = 1.3x1044/ =3x1017s = 10 milliards d’années
6
Héliosismologie: voir le coeur du Soleil
7
L'évolution des étoiles
Que se passe-t-il lorsque l’hydrogène du cœur est épuisé ? Le cœur devient plus petit, plus dense et aussi plus chaud. Les couches externes entre en expansion L’hydrogène commence à brûler dans l’enveloppe externe Lorsque la température atteint millions de degrés l’hélium brûle ensuite dans le cœur en carbone par la chaîne en trois alpha: 3 4He --> 12C + (gamma ray). L’étoile est devenue une géante rouge
8
Les géantes rouges Cœur : combustion de l’hélium
Combustion de l’hydrogène Enveloppe d’hydrogène Le rayon d’une géante rouge est d’environ 100 millions de km Sa température de surface est d’environ 3000 K La température de son cœur est d’environ 100 millions de K
10
La nucléosynthèse stellaire
Au cour de l’évolution, des éléments lourds sont créés dans le cœur des étoiles par des processus de fusion et dans les enveloppes autour du cœur: H, He, C, O, N , Mg….Fe La masse du cœur augmente. Si la masse du cœur dépasse 1.4 masses solaires alors l’étoile explose. Pour des étoiles de masse inférieure à 8 masses solaires, cela ne se produira pas.
14
Perte de masse Les étoiles perdent la moitié de leur masse par des vents stellaires. Ces vents sont principalement composés d’hydrogène Le étoiles géantes perdent tellement d’hydrogène que leur cœur devient visible. Les photons ultra violets illuminent les enveloppes externes: l’étoiles devient une nébuleuse planétaire.
15
Les nébuleuses planétaires
17
Les naines blanches Qu’est ce qui supporte la force de gravitation ?
A la fin de la phase de nébuleuse planétaire l’étoile reste avec un cœur très chaud et très dense (un million de fois plus dense que la Terre) qui se refroidit graduellement. L’étoile est devenue une naine blanche Les naines blanches se refroidissent très lentement et finissent par s’éteindre. Qu’est ce qui supporte la force de gravitation ? C’est la pression de dégénérescence
18
La mécanique quantique
et les étoiles Dans un article de 1926, il utilisa la toute nouvelle mécanique quantique pour montrer que la pression de dégénérescence peut stopper la contraction gravitationnelle pour les étoiles. La clé est le principe d’exclusion de Pauli: on ne peut pas mettre deux personnes (fermions) au même instant et à la même place. Ralph Fowler
19
La limite de Chandrasekhar
Il reprit le calcul de Fowler et montra qu’il fallait aussi tenir compte d’effets de relativité qui changeaient la conclusion. Seulement les étoiles dont la masse est plus petite que 1.4 fois la masse solaire, connue sous le nom de limite de Chandrasekhar, terminent leur vie paisiblement en naines blanches Subrahmanyam Chandrasekhar
20
En Août 1930, lors de son voyage de Madras à Londres,
Chandrasekhar fit un calcul de 10 minutes qui allait changer notre façon de « voir » les étoiles. « La vie d’une étoile de petite masse est différente celle d’une masse plus grande… Pour des masses inférieures à la masse critique, l’étape en Naine blanche est le début d’un processus de lente extinction. Pour les masses plus grandes on ne passe pas par cette étape. » Chandrasekhar « Je pense qu’il doit y avoir une loi de la Nature qui empêche une étoile de finir de cette absurde façon. » Eddington
22
L’enigme de Sirius B Le ciel en hiver
23
Sirius : l’étoile la plus brillante du ciel
8.6 années lumière
24
Sirius et le mystère des naines blanches
Entre 1834 et 1844, l’astronome F. Bessel observa des irrégularités dans le mouvement de Sirius. Il conclut à la présence d’une étoile associée. Ce compagnon fut découvert en 1862 par G. Clark
25
Sirius B: une naine blanche
Température = K Masse = 1 Soleil Luminosité = Sirius A/10.000 Rayon = rayon terrestre
26
La masse du cœur est de comprise entre 0.5 et 1 masse
Solaire avec une dimension de l’ordre de celle de la Terre. Les réactions dans le cœur sont arrêtées. Elle se refroidit et devient indétectable. Près de 90 % des étoiles de notre galaxie deviendront des naines blanches. Comme le cœur est fait de carbone et que la pression est telle que l’on peut produire une étoile en diamant. Etoile BPM 37093
27
Coeur de Fer: quand une étoile explose
Les étoiles plus massives que 8 masses solaires auront aussi un vent stellaire très important après la phase de combustion de l’hydrogène. Cependant ce vent n’est pas suffisant pour stopper l’explosion de l’étoile en supernova.
28
La supernova 1987A
31
Les pulsars: des chronomètres de l’Univers
Russell A. Hulse Joseph H. Taylor Jocelyn Bell Antony Hewish Le 6 Août 1967, Jocelyn Bell découvrit un nouveau de source qui Envoyait des émission très régulières: secondes. On appela ces sources des pulsars.
32
Le moment angulaire 1 mois 3 minutes 1 milliseconde
33
Le modèle de Tommy Gold des pulsars: les phares célestes
34
Etoiles massives Combustion de l’hydrogène
Supergéante - Combustion de l’hélium Autres processus de fusion - création d’éléments lourds Supernova Etoile à neutrons - Pulsar
35
LE TROUNOIR
36
Oppenheimer et son étudiant
Volkoff ont montré en 1939 qu’il existe une limite supérieure pour la masse d’une étoile à neutrons. Avec son autre étudiant, Snyder ils ont montré qu’au delà, l’étoile se transforme en trou noir. Les trous noirs sont une réalité en astrophysique J. Robert Oppenheimer
41
DECOUVERTE D’UN NOUVEAU PHENOMENE
1960 : les satellites VELA découvrent les sursauts gamma 1973 : rendu public !
42
Les explosions les plus violentes de l’Univers
Les sursauts gamma Les explosions les plus violentes de l’Univers
43
Notre modèle des sursauts gamma
Extrait de Pour La Science Avril 2002, N° 294
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.