Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parDenis Charton Modifié depuis plus de 11 années
1
Les Systèmes de Gestion de Bases de Données (SGBD) L'algèbre relationnelle
2
2006-2007 Bibliographie S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley J.C. Date, A Guide to the SQL Standard, Addison-Wesley J.C. Date, A Guide to DB2, Addison-Wesley R. Elmasri, S. Navathe, Conception et architecture des bases de données, 4ème ed., publié par Pearson Education. H. Garcia-Molina, J. Ullman and J. Widom, Implementation of Database Systems, Prentice Hall, 1999. G. GARDARIN, Bases de Données, Eyrolles, 6ème tirage, 2005. R. Ramakrishnan et J. Gehrke DATABASE MANAGEMENT SYSTEMS, MacGraw Hill M. SCHOLL, B. AMANN, P. RIGAUX, V. CHRISTOPHIDES, D. VODISLAV, Polycopié de Bases de Données, librairie des Arts et Métiers. Ullman J.D. and Widom J. A First Course in Database Systems, Prentice Hall, 1997 Ullman J.D. Principles of Database and Knowledge-Base Systems, 2 volumes, Computer Science Press
3
2006-2007 Sommaire Rappels BD et SGBD relationnels Postgresql, pl/pgsql Algèbre relationnelle Dépendances fonctionnelles et normalisation Architecture d'un SGBD Optimisation dune BD Notions sur l'interfaçage avec les langages évolués Les différents types de SGBD
4
2006-2007 Rappels
5
2006-2007 Niveaux de représentation dune BD (rapport de lANSI/SPARC 75) Schéma externe 1 schéma externe 2 schéma externe n Schéma conceptuel Schéma physique Fichiers Monde réel modélisation Supports physiques Groupe d'utilisateurs 1 groupe dutilisateurs 2Groupe dutilisateurs n
6
2006-2007 Dans la pratique, 4 niveaux : niveau externe (sous-schéma conceptuels) niveau conceptuel (en général, le modèle entité/association) niveau logique (modèle hiérarchique, réseau, relationnel, objet) niveau physique (fichiers, index, …)
7
2006-2007 – Niveau interne : comment sont stockées les données sur les supports physiques --> géré par le SGBD – Niveau conceptuel : passage du monde réel au monde conceptuel via un modèle (exemple : le modèle entité/association). Doit être indépendant de toute implantation (de toute machine) --> géré par le concepteur de la BD – Niveau logique : passage du modèle conceptuel à un modèle de bases de données (relationnel, objet, …), en vue de l implantation sur machine --> géré par le concepteur de la BD – Niveau externe : création de vues (parties de la base de données) sur lesquelles des groupes d utilisateurs ont le droit de travailler (interroger, insérer, modifier et/ou supprimer -> selon les autorisations) --> géré par le concepteur de la BD --> le travail sur les vues est effectué par les utilisateurs.
8
2006-2007 Cycle de vie dune base de données Concevoir (analyse => modèle (E/A par exemple) : concepteur Créer la structure (modèle logique (ex. relationnel) -> SGBD particulier): idem Implanter la base de données (LDD+insertions initiales) : administrateur Optimiser la base de données (indexation, …) : administrateur Manipuler (LMD: insérer, màj, supprimer) : utilisateur Maintenir (requêtes spécifiques) : administrateur Monde réel
9
2006-2007 Modèle relationnel (Codd 1970) On considère D i où i = 1,2..n des ensembles, dits domaines Une relation R est un sous-ensemble du produit cartésien: R dans D i,1 x D i,2... x... D i,k k n Dans une BD relationnelle, on na que des relations finies Les D i,j sont les attributs de R ;
10
2006-2007 Schéma d'une relation Les noms R et D i,j constituent le schéma de la relation Ce schéma et l'ensemble des éléments possibles de R constituent une intention de R. Les éléments de R présents à un moment donné constituent une extension de R. Une mise à jour de la relation R modifie une extension et change l'état de la base
11
2006-2007 Langages relationnels Lalgèbre relationnelle
12
2006-2007 Les langages relationnels : sont utilisés pour effectuer des requêtes sur une BD relationnelle utilisent 2 approches qui expriment les mêmes opérations : - algèbre relationnelle - calcul relationnel
13
2006-2007 Les opérateurs de l algèbre relationnelle sont des opérateurs ensemblistes. Un opérateur prend en entrée une ou deux relations (ensembles de tuples de la base) et retourne un résultat qui est également une relation. Il existe 5 opérateurs de base : - les opérateurs unaires : selection et projection - les opérateurs binaires : union, différence et produit cartésien D autres opérateurs existent qui peuvent s exprimer à l aide des opérateurs de base. Ce sont la jointure, la division et l intersection Algèbre relationnelle R1R'1 R1 R2 R'
14
2006-2007 Projection des attributs d une relation R sur un sous-ensemble des attributs de R : п A1, A2, …, Ak (R) = R(A1, A2, …,Ak) où A 1, A 2, …,A k sont un sous- ensemble du schéma de la relation R. La projection sur A1, A2, …, Ak élimine tous les autres attributs de la relation et supprime les tuples dupliqués. La projection : п R R' п
15
2006-2007 Exemple de projection X Y Z a b c d a b c b d a b e e e a X Y a b d a c b e =>п X,Y (R) = R = (X,Y,Z) et R' =п X,Y (R) = projection de R sur les attributs X et Y R'R
16
2006-2007 Exemple de projection (2) Requête : Soit la relation Ville (id, nomp, nomv) – Quels sont les villes de résidence des personnes de la base (projection sur l'attribut nomv) nomv Tab2 = µ nomv (Tab 1 ) ParisJacques3500 ParisDurand3333 HavreMarc1500nomvnompid Tab 1 Paris Havrenomv Tab 2
17
2006-2007 Selection (restriction) R R' La selection se fait en fonction dune condition C portant sur des attributs de R. Le résultat est une relation dont les attributs satisfont la condition. On note : C (R)
18
2006-2007 Exemple de selection X Y Z a b 1 d a 2 c b 3 a b 4 e e 5 => Y='b' (R) = R' R X Y Z a b 1 d a 2 c b 3 a b 4 e e 5 => C (R) = R' où C : (X=a Y=a) Z 3 R X Y Z a b 1 d a 2 X Y Z a b 1 c b 3 a b 4 R'
19
2006-2007 Exemple de sélection (2) Requête : – Sélectionner tous les individus habitant à Paris. nomv=PARIS Tab1 2 = nomv=Paris (Tab1)
20
2006-2007 Il s agit d une formule logique qui relie par des connecteurs logiques (AND, OR, NOT) des expressions de la forme : Ai op Aj ou Ai op a ou Ai où Ai, Aj sont des attributs de la relation R a est un élement (une valeur) du domaine de Ai op est un opérateur de comparaison : =,, =, <> Les conditions de sélection
21
2006-2007 Expressions de l algèbre relationnelle L algèbre relationnelle est fermée par rapport aux opération de l A.R. : le résultat d une opération relationnelle est aussi une relation. Les opérations relationnelles peuvent être combinées et former des expressions plus complexes. Ex : Relation R = Commande (nom, prenom, nomc, qte) R = pnom ( nom (paul(commande)) R = nom (paul(commande)) : contient les commandes de paul
22
2006-2007 Produit cartésien Produit cartésien de la relation R par la relation S : R x S Argument : 2 relations quelconques R (A1, A2, …, An) et S (B1, B2, …, Bk) Schéma de la relation résultat T : R x S : (A1, …, An, B1, …, Bk) Les occurrences de T : ensemble des tuples ayant n+k attributs : –dont les n valeurs des premiers attributs sont les tuples de R –et les k dernieres sont les tuples de S X R1 R2 R
23
2006-2007 Exemple A B 1 1 1 2 3 4 C D E a b a a b c b a a A B C D E 1 1 a b a 1 2 a b a 3 4 a b a 1 1 a b c 1 2 a b c 3 4 a b c 1 1 b a a 1 2 b a a 3 4 b a a RS R x S
24
2006-2007 Jointure naturelle Soient 2 relations R et S ayant des attributs en commun R(A 1, …, A m, X 1, …,X K ) S(B 1, …, B n, X 1, …, X k ) Schéma de la relation R S, jointure naturelle de R et S : T (A 1, …, A m, B 1, …, B n,X 1, …,X K ) Un tuple de R S comporte donc (m+n+k) attributs. A B C a b c d b c b b f c a d B C D b c d b c e a d b A B C D a b c d a b c e d b c d d b c e c a d b R S R S
25
2006-2007 Jointure naturelle (suite) La jointure naturelle correspond à un produit cartésien, suivi d une sélection. Soient 2 relations R et S ayant des attributs en commun R(A 1, …, A m, X 1, …,X K ) S(B 1, …, B n, X 1, …, X k ). Soit V = {X 1, …, X k } R S = U ( A V : R.A=S.A (R x S)) où U = l ensemble des attributs de R et S et R.A est l attribut A de R
26
2006-2007 Jointure naturelle - algorithme Début Pour tout tuple a de R et tout tuple b de S : 1. Concaténer a et b. On obtient un tuple avec comme attributs a|b, c-à-d : A 1, …, A m, X 1, …, X k, B 1, …, B n, X 1, …, X k 2. Ne garder ce tuple que si chaque attribut X i de a est égal à lattribut X i de b : i=1::..k a.X i = b.X i 3. Eliminer les valeurs (colonnes) dupliquées. On obtient pour la jointure naturelle un tuple avec comme attributs : A 1, …, A m, B 1, …, B m, X 1, …, X k a b a+b
27
2006-2007 -jointure Notée :. C est une jointure entre 2 relations R et S avec : R = ( A 1, …, A m ), S = (B 1, …, B n ) Schéma de T = R A i B j S = (A 1, …, A m, B 1, …, B n ) La valeur de T est : Ai Bj (RxS) : sélection des tuples de RxS tels que A i B j Equijointure : on parle de équijointure quand lopérateur est l égalité. R A i B j S, où {=,,,,, }
28
2006-2007 Exemple de - jointure A B 1 a 1 b 3 a C D E 1 b a 2 b c 4 a a R S A B C D E 1 a 1 b a 1 a 2 b c 1 a 4 a a 1 b 1 b a 1 b 2 b c 1 b 4 a a 3 a 1 b a 3 a 2 b c 3 a 4 a a A B C D E 1 a 1 b a 1 a 2 b c 1 a 4 a a 1 b 1 b a 1 b 2 b c 1 b 4 a a 3 a 4 a a A > C RxS R A C S
29
2006-2007 Exemple d équijointure A B 1 a 1 b 3 a C D E 1 b a 2 b c 4 a a R S A B C D E 1 a 1 b a 1 a 2 b c 1 a 4 a a 1 b 1 b a 1 b 2 b c 1 b 4 a a 3 a 1 b a 3 a 2 b c 3 a 4 a a A B C D E 1 a 4 a a 1 b 1 b a 1 b 2 b c 3 a 4 a a RxS R B=D S B D = B=D (RxS)
30
2006-2007 Exercices : Equijinture, jointure naturelle Soient les relations : Immeuble (Adr-Imm, NB-etages, Date-Const, Proprio) App-Imm (Adr-Imm, Num-App, Etage ) 1. Nom du propriétaire de l immeuble où est situé l appartement occupé par Dupond : jointure naturelle Proprio (Immeuble Occup = «Dupond» (App-Imm)) 2. Appartements occupés par des propriétaires dimmeubles : Adr-Imm, Num-App, Etage (App-Imm Occup=Proprio Immeuble)) Jointure naturelle équijointure
31
2006-2007 Autre exemple de requête Soit le schéma : Commandes (pnom, cnom, num-cmde, qte) Clients (cnom, cadr, balance) Nom et adresse des clients qui ont commandé des briques : cnom,cadr (Clients pnom = «briques» ( Commandes)) Jointure naturelle
32
2006-2007 UNION Soient 2 relations R(A 1, …, A m ) et S(A 1, …, A m ) Le schéma de T = R S est : T (A 1, …, A m ) Les tuples de T : union ensembliste sur D 1 x … x D m avec D i domaine de A i Les doublons sont éliminés. T = R S = {t / t R t S} A B a b a c d e A B a b a e d e f g R S A B a b a c a e f g R S
33
2006-2007 UNION A B a b a c d e A B a b a e d e f g R S A B a c R - S Soient 2 relations R(A 1, …, A m ) et S(A 1, …, A m ) Le schéma de T = R - S est : T (A 1, …, A m ) Les tuples de T : différence ensembliste sur D 1 x … x D m avec D i domaine de A i T = R - S = {t / t R t S} A B a c f g S - R
34
2006-2007 INTERSECTION A B a b a c d e A B a b a e d e f g R S A B a c R - S (différence) A B a b d e R S =R - (R - S) (intersection) Soient 2 relations R(A 1, …, A m ) et S(A 1, …, A m ) Le schéma de T = R S est : T (A 1, …, A m ) Les tuples de T : intersection ensembliste sur D 1 x … x D m avec D i domaine de A i T = R S = {t / t R t S}
35
2006-2007 Semijointure La semijointure R S correspond à une projection sur les attributs de R de la jointure naturelle entre R et S : U (R S) Si R = (A 1, …, A m, X 1, …, X k ) et S = (B 1, …, B n, X 1, …, X k ) alors le schéma de T : R S = (A 1, …, A m, X 1, …, X k ) Exemple : A B C a b c d b c b b f c a d B C D b c d b c e a d b R S => R S A B C D a b c d a b c e d b c d d b c e c a d b A B C a b c d b c c a d => R S jointure naturelle semijointure
36
2006-2007 Division A B C D a b x m a b y n a b z o b c x o b d x m c e x m c e y n c e z o d a z p d a y m C D x m y n z o A B a b c e R S R S
37
2006-2007 Division : exemple Num nom p-nom qte 1 Jean briques 100 2 Jean ciment 10 3 Jean plâtre 5 4 Paul briques 300 5 Paul platre 8 5 Vincent platre 15 P-nom briques ciment plâtre PROD COMM nom Jean COMM PROD Client(s) qui ont commandé tous les produits
38
2006-2007 Division : formellement Soient R1(A 1, …, A m, X 1, …, X k ) et S (X 1, …, X k ) c-à-d les attributs de S sont inclus dans R. T = R a pour schéma : T (A 1, …, A m ) Tuples de T = R S ={(a 1, …, a m )/ (x 1, …, x k ) S : (a 1, …, a m, x 1, …, x k ) R La division peut s exprimer en utilisant les opérateurs produit cartésien, projection et différence : R S = R1 - R2 où : R1 = A1, …, Am (R) et R2 = A1, …, Am ((R1xS) - R)
39
2006-2007 Opération de renommage Notée :, c est une opération unaire. Consiste à remplacer le nom d un attribut par un autre. Soit R (A 1, …, A m ), on a : Ai Bi R : T (A 1, …, A i-1, B i, A i+1,..., A m )
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.