La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Traitement d’images : concepts fondamentaux

Présentations similaires


Présentation au sujet: "Traitement d’images : concepts fondamentaux"— Transcription de la présentation:

1 Traitement d’images : concepts fondamentaux
Définitions fondamentales et prétraitements :  Information représentée par un pixel, Manipulation d’histogrammes : égalisation, Filtrage passe-bas. Introduction à la morphologie mathématique (cas binaire) :  Erosion, dilatation, ouverture et fermeture binaires, Reconstruction géodésique, étiquetage en composantes connexes, Squelette. Introduction à la classification (cas pixelique) : algorithme des k-ppv, des c-moyennes critères bayésiens : MV, MAP.

2 Introduction à la morphologie mathématique
Traitement non linéaire de l’information Analyse morphologique : extraction des informations à partir de tests Exemples de problèmes : Repose sur la théorie des ensembles, des treillis complets, … – s’applique aux ensembles, aux fonctions, … Comment séparer 2 composantes ? Comment éliminer le bruit ? Comment étiqueter différemment 2 formes connexes ? Comment comparer 2 formes ?

3 Définition: 1 treillis est 1 ensemble ordonné (E,) tel que toute partie de E admette 1 borne supérieure et 1 borne inférieure  : réflexive (xE, xx), antisymétrique ((x,y)E2, xy et yx  x=y), transitive ((x,y,z)E3, xy et yz  xz ) Exemple de treillis: plus petit des majorants plus grand des minorants ensembliste éléments parties de S relation d’ordre inclusion borne supérieure union borne inférieure intersection involution complémentaire

4 Opérateurs de MM : fondements mathématiques
principes fondamentaux Compatibilité avec les translations Compatibilité avec les homothéties Localité Semi-continuité propriétés Croissance Extensivité / anti-extensivité Idempotence Dualité Indépendance par rapport à l’origine de l’espace: t, y(f+t)=y(f)+t Indépendance par rapport au paramètre d’échelle: l, y(lf)=ly(f)  E’ borné,  E borné / y(f)E’=y(fE)E’ A,B AB  y(A)  y(B) Extensivité:  A, Ay(A) y(y(.))=y(.) y et f duales :

5 Erosion / dilatation : définitions (1)
Élément structurant B  relations de l’objet X avec l’élément (taille, forme données) Addition de Minkowski : Union des translatés de X par chaque point de B propriétés : commutative, associative, croissante, élément neutre Soustraction de Minkowski : Intersection des translatés de X par chaque point de B propriétés : non commutative, associative, croissante, élément neutre Ө

6 Erosion / dilatation : définitions (2)
Dilatation (binaire) : lieu géométr. des points x tels que Bx intersecte X Erosion (binaire) :  lieu géométr. des points x tels que Bx soit inclus dans X

7 Erosion / dilatation : définitions (2)
Dilatation (binaire) : lieu géométr. des points x tels que Bx intersecte X Erosion (binaire) :  lieu géométr. des points x tels que Bx soit inclus X

8 Erosion / dilatation : propriétés (1)
Croissance par rapport à X En effet : Extensivité / anti-extensivité (si centre de B inclus dans B) Croissance / décroissance par rapport à B

9 Erosion / dilatation : propriétés (2)
Commutations en effet : Adjonction  La partie de Bz qui n’intersecte pas avec X est dans le complémentaire de Bz’  quand se restreint à BzBz’ on ‘est dans’ X

10 Erosion / dilatation : algorithmes (1)
Cas général (binaire) : En chaque pixel z de l’image examiner la relation entre l’élément struct. Bz et l’objet X Dilatation: pour i[1,#lignes] // boucle sur les lignes pour j[1,#colonnes] { // boucle sur les colonnes initializer y à 0 pour i’[iBmin,iBmax] // origine de B en 0  B inclus dans [iBmin,iBmax] [jBmin,jBmax] pour j’[jBmin,jBmax] si (y nul et ima(i+i’,j+j’) non nul et B(i’,j’) non nul) alors y  1 ima_dilate(i,j)  y } Erosion: initializer y à 1 si (y non nul et ima(i+i’,j+j’) nul et B(i’,j’) non nul) alors y  0 ima_erode(i,j)  y

11 Erosion / dilatation : algorithmes (2)
Exploitation de l’associativité de la dilatation / érosion Cas d’un élément B qui est le résultat de l’addition de Minkovski de et avec B1 (B à la taille élémentaire) : Itérer la dilatation (érosion) par B1 Cas d’un élément convexe : Dilatations (érosions) successives par 2 segments Cas d’un élément structurant ‘boule’ : Seuillage de la transformée en distance de l’image binaire ou de son complémentaire

12 Dilatation binaire : exemples
dB4(X) , B4: dB2(X), B2: dB2(dB2(X)) dB2(dB2(dB2(X))) dB0(X), B0: dB0(dB0(X)) dB0(dB0(dB0(X))) dB1(dB0(dB0(dB0(X)))), B1: dB1(dB1(dB0 (dB0(dB0(X))))) dB1(dB1(dB1(dB0 (dB0(dB0(X)))))) Dist1 4 3 4 3 0 3 11 11 5 0 5 Dist1 Dist1,5 Dist1,5 Dist2 Dist2 Dist2,5 Dist2,5

13 Érosion binaire : exemples
eB4(X) , B4: eB2(X), B2: eB2(eB2(X)) eB2(eB2(eB2(X))) eB0(X), B0: eB0(eB0(X)) eB0(eB0(eB0(X))) eB1(eB0(eB0(eB0(X)))), B1: eB1(eB1(eB0 (eB0(eB0(X))))) eB1(eB1(eB1(eB0 (eB0(eB0(X)))))) Dist1 Dist1,5 4 3 4 3 0 3 11 11 5 0 5 Dist2 Dist2,5

14 Ouverture / fermeture : cas binaire
Propriétés Croissance / X trivial car eB et dB  / X Extensivité / anti-extensivité propriété d’adjonction  car  car (Dé)croissance / B

15 Ouverture / fermeture : propriétés
Idempotence Min-max : L’ouverture de X est le plus petit X’ de même érodé que X La fermeture de X est le plus grand X’ de même dilaté que X

16 Profil morphologique : définition
(gl)l≥0 une ‘granulométrie’ et (jl)l≥0 l’anti- granulométrie associée Fonction de distribution granulométrique m mesure bornée sur le treillis (e.g. aire#pixels) Xl = gl(X) et X-l = jl(X)  FX(l)=1-m(Xl)/m(X0) Spectre granulométrique fX(l)= F’X(l) (gl)l0 / 0ll’  gl’gl=glgl’=gl’

17 Profil morphologique : application à l’analyse de texture
X1=g(X0) X2=g(X1) X3=g(X2) X4=g(X3) X-1=j(X0) X-3=j(X-2) X-4 X-5 X-6 X-7 X-8

18 Dilatation / Erosion géodésique binaire
Boules géodésiques Quand l , les boules géodésiques progressent comme le front d’une onde émise depuis z dans le milieu X Dilatation géodésique de taille l de Y dans X (YBl)X Erosion géodésique X eX(Y1) Y1 Y2 e(Y2)X

19 Reconstruction géodésique binaire
Application : extraction de composantes connexes à partir de marqueurs Principe : à partir d’un point de la composante, on reconstruit toute la composante Méthode : dilatation géodésique dans X

20 Reconstruction géodésique : algorithme (cas binaire)
Éviter de réitérer dilatation jusqu’au diamètre des plus grandes composantes connexes Cas efficace : utilisation d’une pile des pixels de l’image à traiter : Initialisation de la pile avec les pixels de XY Tant qu’il reste des éléments dans la pile : Extraire un élément (pixel) de la pile Le traiter labelisation de la composante connexe dans l’image résultat Calcul de ses voisins (dilatation par B) Ajout dans la pile (si nécessaire) des voisins situés dans X

21 Reconstruction géodésique : exemple
Itération contenu de la pile 1 2 3 4 5 6 7 1 (2,1) 2 (1,1) (3,1) 3 (3,1) (1,2) 4 (1,2) (3,2) (4,1) 5 (3,2) (4,1) (1,3) 6 (4,1) (1,3) (3,3) 7 (1,3) (3,3) (5,1) 8 (3,3) (5,1) (2,3) (1,4) 9 (5,1) (2,3) (1,4) (4,3) (3,4) 10 (2,3) (1,4) (4,3) (3,4) (5,2) 11 (1,4) (4,3) (3,4) (5,2) (2,4) 12 (4,3) (3,4) (5,2) (2,4) (5,3) (4,4) 13 (3,4) (5,2) (2,4) (5,3) (4,4) (5,2) (2,4) (5,3) (4,4) (2,4) (5,3) (4,4) (5,3) (4,4) (5,4) (4,4) (5,4) (5,4)

22 Exemples d’application (1)
Reconstruction géodésique à partir de Y X Algorithme : k=0; Pour chaque pixel s de X : si xs et !zs : - calcul de EBX({s}) - k++ - t  EBX({s}), zt=k # composantes connexes = k Etiquettage de composantes connexes

23 Exemples d’application (2)
Filtrage par Erosion-Reconstruction (ne modifie pas les contours des objets restants  Erosion-Dilatation)  Erosion de X puis reconstruction de eB(X) dans X Suppression d’objets touchant le bord de l’image  Différence entre X et la reconstruction du bord dans X - =

24 Exemples d’application (3)
Bouchage de trous  Complément de la reconstruction dans Xc d’un ensemble qui n’intersecte pas X Seuillage avec hystérésis  Reconstruction des points au-dessus du seuil haut dans l’ensemble des points au-dessus du seuil bas. et

25 Erodé ultime : définition / algorithme
Cas général (binaire) Ensemble des composantes connexes de X disparaissant à l’itération suivante lors d’une séquence d’érosions par un élément structurant élémentaire B1  Pour chaque pixel (non déjà dans érodé ultime) disparaissant à l’itération t, calculer la composante connexe à t-1 et tester si tous les pixels ont effectivement disparus à t. Cas d’un élément structurant disque Ensemble des maxima régionaux de la fonction distance de X à son complémentaire Algorithme : Calcul de l’image des distances Calculer l’ensemble des maxima locaux Pour chaque maximum local (xsxt, tVs) non déjà traité : Reconstitution géodésique de la composante connexe à xs conditionnellement à l’image des valeurs supérieures à xs  CC(xs) Si xtCC(xs): xt>xs, alors marquer comme traités les maxima locaux qui appartiennent à CC(xs) Sinon, alors xs est un maximum régional et CC(xs)  érodé ultime

26 Erodé ultime : exemple Distance 4-connexité
Distances 8-connexité, respectivement masque (1,0), (4,3,0) et (11,7,5,0) Érosions successives par B

27 Transformation en ‘tout ou rien’ : cas binaire
Définition :  teste l’appartenance de certains voisins à X ET de certains autres à Xc Notation des éléments structurants : noir = objet (1), blanc = fond (0), gris = quelconque Ex. d’application : détection de coins (saillants) UL UR LL LR Exemple :

28 Calcul de l’enveloppe convexe
Rappel : Déf. L'enveloppe convexe d'un objet O est l’ensemble convexe (Ec /  (A,B) 2 points de Ec, [A,B] est entièrement contenu dans Ec) le plus petit parmi ceux incluant O.  épaississement (ajout des points sélectionnés) par la transformation en Tout ou Rien suivante : 12 elts struct. Exemple :  avec 1 elt. struct. 33, il n’est pas possible de gérer des pentes autres que {0,/2,/4,3/4}

29 Squelette morphologique : définition
Exemples de propriétés souhaitées : Préservation de la géométrie, de la topologie Invariance aux translations, rotations, homothéties Réversibilité, continuité, épaisseur nulle Squelette morphologique euclidien (cas continu) U des centres des boules maximales (contenues ds X) Cas discret : U des résidus d’ouverture des érodés successifs :  Pb : ne préserve pas la topologie Même forme, respect des parties allongées, etc… Mêmes nombres de composantes connexes, de trous. La forme peut être retrouvée connaissant le squelette et la taille des érosions (p.e.). Une ‘petite’ variation de forme engendre une petite variation du squelette. Épaisseur nulle, réversible Mais : ne préserve pas la topologie, ex : non continu, ex : mais

30 Homotopie discrète et simplicité
Définition : F fct de R2  R2 préserve la topologie si  A ouvert, A et F(A) sont homotopes Cas discret : A’ K-homotope à A   2 bijections préservant la relation d’entourage (au sens du théorème de Jordan) entre : (i) les ensembles des K-cc (K{4,8}) de A et de A’, (ii) les ensembles des K’-cc (K’=12-K) de Ac et de (A’)c  pour A’A (i) toute K-cc (K{4,8}) de A contient exactement 1 K-cc de A’ et (ii) toute K’-cc (K’=12-K) de (A’)c contient exactement 1 K’-cc de Ac Définition : x point K-simple dans X  X-{x} homotope à X  x a au moins 1 K’-voisin dans Xc et x est K-voisin d’1 seule K-cc de X  se calcule en examinant les 8 voisins

31 Homotopie discrète et simplicité
Propriété : x est K-simple  NKX(x)=1 Retrait des points K-simples : séquentiel  perte des propriétés métriques, parallèle  risque de perte de l’homotopie solution : ‘¼ parallèle’ : on ne retire ensemble que les points qui ont 1 voisin ‘Nord’ (resp. ‘Est’, ‘Sud’, ‘Ouest’) dans Xc Rq : noyau homotopique ne préserve pas la forme de X  utilisation de ‘points d’ancrage’ x3 x1 x2 x4 x0,x8 x x5 x7 x6 Une réunion de points K-simples n’est pas nécessairement un ensemble simple, ex : x et y sont 8-simples mais pas {x,y} x y

32 Caractérisation géométrique des points K-simples
Définition : transformation ‘tout ou rien’  teste l’appartenance de certains voisins à X ET de certains autres à Xc Définition : amincissement (resp. épaississement) de X  enlever (resp. ajouter) des points de X sélectionnés par 1 transformation en tout ou rien. Propriété : 1 amincissement (épaississement) est homotopique si l’inversion de couleur du point central ne modifie pas la topologie. Ex   préserve topo Exemples d’élément structurant : Lskel Mskel Ebardage

33 Squelette morphologique : algorithme
Rq : noyau homotopique ne préserve pas la forme de X  utilisation de ‘points d’ancrage’ , e.g. maxima locaux de la distance Algorithme préservant la topologie : Initialiser S(X) à X Répéter (jusqu’à avoir traité tous les points de X) : Soit ESd les points de S(X) ayant un voisin immédiat dans (S(X))c dans la direction ‘Nord’ (resp. ‘Est’, ‘Sud’, ‘Ouest’) Déterminer LK-s l’ensemble (parmi les points de ESd) des points ‘K-simples’ (en K connexité) Retirer simultanément de S(X) tous les points de LK-s (sauf points d’ancrage) Changer la direction considérée (N, E, S, ou O) Informatiquement, utilisation de ‘piles’ de pixels

34 1 1 2 1 2 1 2 2 1 1 2 2 1

35 Exemple : X 4-connexité Itérations 0, 1, 2 Itérations 3, 4, 5

36 Squelette par zones d’influence (SKIZ)
Définition : Soit X compact de R2, la zone d’influence d’une composante connexe Xi de X est l’ens. des points plus près de Xi que de tout autre composante Le SKIZ est la frontière des zones d’influence Calcul du SKIZ : 1. Amincissement du fond par Lskel 2. Puis ébardage du résultat de 1. Ex :

37 Exercices (I) Proposer une ou plusieurs solutions pour les problèmes cités en introduction : Comment éliminer le bruit ? Comment séparer ces 2 composantes ? Comment comparer 2 formes ? Comment étiqueter différemment 2 formes connexes ?

38 Exercices (II) Démontrer les propriétés de commutation des opérateurs dilatation et érosion binaires. (Utiliser les définitions de ces opérateurs) Démontrer les propriétés de croissance / décroissance et extensivité / anti-extensivité des opérateurs ouverture et fermeture binaires. (Utiliser les propriétés des opérateurs dilatation et érosion, notamment l’adjonction pour démontrer l’extensivité / anti-extensivité)

39 Exercices (II) : correction
Commutation des opérateurs dilatation et érosion. Propriétés des ouvertures / fermetures binaires Croissance / X : trivial car eB et dB  / X Extensivité / anti-extensivité propriété d’adjonction  car  car (Dé)croissance / B

40 Exercices (III) Soit l’image suivante :
On cherche à compter les différents types de cellules et leur proportions respectives. Proposez une solution, décrivez le synoptique de l’algorithme à mettre en œuvre et les fonctions à développer (notamment les entrées / sorties), puis pour chacune d’elles le pseudo-code.

41 Exercices (III) : correction
Image niveaux de gris Image binaire Image binaire filtrée Éliminer les objets touchant le bord Seuillage Image segmentée des particules Détection des différentes particules Image binaire filtrée Éliminer le bruit (petites particules) Image des squelettes des particules Squelette Détermination des paramètres pour chaque particule Liste des objets avec caractérist. Liste des objets avec étiquettes Classification

42 Bibliographie H. Maître, Le traitement des images, Hermès éditions.
J.-P. Cocquerez & S. Philipp, Analyse d’images : filtrage et segmentation, Masson éditions. S. Bres, J.-M. Jolion & F. Lebourgeois, Traitement et analyse des images numériques, Hermès éditions.


Télécharger ppt "Traitement d’images : concepts fondamentaux"

Présentations similaires


Annonces Google