Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parInès Girault Modifié depuis plus de 10 années
1
Chapitre 9 INFLUENCE D’UN CHAMP MAGNÉTIQUE SUR LES NIVEAUX D’ÉNERGIE QUANTIFICATION SPATIALE Guy Collin,,
2
Préambule On a vu que pour chacun des atomes le moment magnétique de spin vient s’ajouter au moment orbital. Si l’on immerge un atome dans un champ magnétique intense, comment interagit ce champ magnétique avec le moment magnétique de l’atome ? Ce dernier s’oriente-t-il dans le sens du champ uniquement comme le fait l’aiguille d’une boussole dans le champ magnétique terrestre ? Peut-il prendre d’autres orientations ? Comment peut-on observer ces orientations ? Que peut-on déduire de ces observations ?
3
Rappels Dans le cas des atomes hydrogénoïdes, la solution de l’équation de SCHRÖDINGER introduit trois nombres quantiques n, et m : n quantifie l’énergie ; quantifie le moment angulaire orbital ; et le nombre m fixe la projection du moment cinétique sur l’axe Oz par la relation :
4
Rappels : nombres quantiques
En l’absence de toute intervention extérieure, les niveaux d’énergie correspondant aux valeurs possibles de m sont dégénérés, c’est-à-dire qu’ils possèdent la même énergie.
5
Moment magnétique associé au moment orbital
Un électron qui tourne autour du noyau sur une orbite sous l’action de la force centrale de COULOMB développe un moment cinétique L constant : L r me u
6
Vecteur moment cinétique
u dt dS r me u Noyau En valeur absolue, ce vecteur L est égal à l’aire du parallélogramme construit sur les vecteurs me u et r .
7
Vecteur moment cinétique
noyau dS e- M M ’ u dt r me u L = r me u et 2dS = r u dt D’où L/2 dS = me /dt ou dS/dt = L / 2 me dS/dt vitesse aérolaire dS/dt = n S L’orbitale est équivalente à une spire, de surface S, parcourue par un électron n fois par seconde. Dans ce cas, le moment magnétique est égale à : M = I S = - n e S et n S = - M / e.
8
Moment cinétique et moment magnétique
À un moment cinétique p de l’électron est associé un moment magnétique dont la valeur est donnée par : Le vecteur M est un vecteur colinéaire à L mais de sens opposé.
9
Magnéton de BOHR On se souvient de l’unité de moment cinétique h / 2 p
On peut associer à cette unité de moment cinétique une unité de moment magnétique appelée magnéton de BOHR dont la valeur absolue est : où µB = 0,927 3 × J/(Wb/m2) Suivant la valeur du nombre quantique orbital : 0, 1, 2, 3, etc., le moment magnétique associé au mouvement orbital d’un électron sera : 0, µB , 2 µB , 3 µB, etc. La valeur exacte du moment magnétique associé est donc :
10
Moment magnétique associé au spin de l’électron
S’il ne peut être calculé théoriquement, le moment magnétique associé au spin peut être mesuré directement. Au moment cinétique (1/2) (h/2 p) est associé 1 magnéton de BOHR :
11
Moment magnétique et champ magnétique
µ ( H + H/ z) H W = - M H = - M H cos q Fz = - dW/dz et Fz = - M dH/dz cos q + µ - µ Fz
12
Jet atomique et champ magnétique
Source d’atomes vers la pompe à vide Pièce polaire sud Pièce polaire nord jet atomique en l’absence de champ magnétique écran refroidit jet atomique en présence de champ magnétique
13
Expérience de STERN et GERLACH avec des atomes ayant un spin = 1/2
En l’absence de champ, les atomes d’argent, de sodium,… viennent se condenser en une seule tache. pôles magnétiques sud nord + 1/2 faisceau d’atomes - 1/2 En présence de champ, le faisceau se sépare en deux faisceaux distincts.
14
L’interprétation pour des atomes dans un état S1/2
L’expérience de STERN et GERLACH montre donc que le moment magnétique de spin peut s’orienter dans deux positions seulement par rapport à un champ magnétique : dans le sens du champ et dans le sens opposé au champ. L’expérience permet de mesurer le moment magnétique associé au spin. On trouve un magnéton de BOHR pour les atomes dans l’état 2S1/2.
15
Atomes dans un état quelconque
Le magnétisme a deux origines : les moments cinétiques orbitaux et de spin Que se passe-t-il si on fait l’expérience de STERN et GERLACH avec un atome dont le moment cinétique total est J ? On observe 2 J + 1 taches disposées symétriquement par rapport à la tache centrale. La valeur du moment magnétique déduite de la mesure n’est pas J mB mais g J mB.
16
Calcul du facteur g (facteur de LANDÉ)
Rappel : Les deux vecteurs moments magnétiques orbitaux et de spin n’ayant pas la même valeur absolue, on montre que leur somme fait intervenir un facteur de proportionalité que l’on peut calculer :
17
Cas particuliers du facteur de LANDÉ
Si S = 0, on a J = L et g = 1. Si L = 0, on a J = S et g = 2. Si g = 1 + 0/0, (L = - S), l’atome n’a pas de moment magnétique propre. Si g = 0, le niveau correspondant n’est pas subdivisé en sous niveaux en présence de champ magnétique.
18
Quelques facteurs de LANDÉ
19
Effet ZEEMAN normal Lorsque l’atome émetteur est placé dans un champ magnétique, on assiste à un dédoublement des raies d’émission. L’effet normal est observé lorsque le niveau d’énergie correspond à un spin S = 0, c’est-à-dire lorsqu’il s’agit d’un niveau simple (2 S + 1 = 1). Rappelons que dans ce cas, le facteur g = 1 . On montre que M = L cos q et que M = - L, - L + 1, ,+ L.
20
Dédoublement d’un niveau dans un champ magnétique
Énergie Niveau primitif 1P1 M +1 -1 µB H Niveau dans le champ magnétique.
21
Dédoublement d’un niveau
+ 2 +1 -1 -2 Énergie Niveau primitif 1D2 Niveau dans le champ magnétique. µB H
22
Effet ZEEMAN normal sur l’atome d’hélium
1P1 M + 1 - 1 µB H sans champ 1S0 avec champ E hn0 E hn0 Rappel : + M -
23
Effet ZEEMAN normal sur une transition du Cd
+ 2 + 1 - 1 - 2 µB H 1D2 1P1 sans champ E0 + µB H E0 E0 - µB H E hn0 E hn0 Règle de sélection : D M = 0, ± 1
24
Effet ZEEMAN anormal sur la transition D1 du Cd
avec champ E n0 2P1/2 2S1/2 sans champ M + 1/2 - 1/2 Mg + 1/3 - 1/3 M + 1/2 - 1/2 Mg + 1 - 1 E n0 Rappel : + J M - J
25
Effet ZEEMAN anormal sur la transition D2 du Cd
+ 3/2 + 1/2 - 1/2 - 3/2 + 6/3 + 2/3 - 2/3 - 6/3 E hn0 2P3/2 2S1/2 sans champ g µBH M + 1/2 - 1/2 Mg + 1 - 1 E n0 Règle de sélection : D M = 0, ± 1
26
Somme vectorielle des moments
Notation atomique Multiplicité du niveau 2 S + 1 X J = L + S Somme vectorielle des moments Moment cinétique orbital
27
Conclusion Le moment magnétique de l’atome, en présence d’un champ magnétique externe prend des orientations privilégiées de telle manière que le moment magnétique de l’atome est égal à un nombre entier de magnéton de BOHR. La mise en évidence de cette quantification spatiale est observée lors de la déviation subie par un faisceau d’atomes de sodium, par exemple, circulant entre les mâchoires d’un électroaimant développant un champ intense. Le faisceau originel se dédouble en 2J + 1 faisceaux.
28
Conclusion Par ailleurs, l’effet ZEEMAN normal (et anormal) permet de « voir » ces orientations à travers le dédoublement de raies d’émission résultant d’un saut électronique. Ces expériences permettent de caractériser les niveaux d’énergie impliqués dans les transitions.
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.