Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parAlphonse Lagrange Modifié depuis plus de 10 années
1
Rodolfo Jalabert LA RESONANCE PLASMON DANS LES
NANOPARTICULES METALLIQUES : un degré de liberté quantique couplé aux excitations électron-trou Rodolfo Jalabert expérimentateurs à Strasbourg: R. Molina (Madrid) G. Weick (Berlin) C. Seoánez (Madrid) G.-L. Ingold (Augsburg) D. Weinmann (Strasbourg) J.-Y. Bigot E. Beaurepaire V. Halté M. Vomir P.-A. Hervieux G. Manfredi Y. Yin
2
PLASMONS POUR TOUS ET PARTOUT
Plasmons au début du XXème Plasmons dans les années 90 Plasmons pour les artisans de l’antiquité Plasmons pour les biologistes Plasmons pour les physiciens nucléaires Les autres plasmons Plasmons pour les ingénieurs (plasmonique) Plasmons pour la physique mésoscopique Plasmons et optique femto-seconde Plasmons comme excitations collectives Optique quantique avec les plasmons Plasmons et spins Conclusion et prospectives
3
Plasmons au début du XXème
4
On the color of gold colloids - 1908
MIE THEORY On the color of gold colloids λ >> 2a in a metal: resonance pour surface plasmon
5
Plasmons dans les années 90
6
PLASMON RESONANCE IN FREE CLUSTERS
(visible) Photo-absorption cross section of Li clusters, small red-shift with increasing cluste size Bréchignac et al, PRL 1993
7
Plasmons pour les artisans de l’antiquité
8
ABSORPTION AND SCATTERING BY SMALL PARTICLES
Chartres cathedral Lycurgus cup, 4th century AD
9
Plasmons pour les biologistes
10
INTERACTION WITH THE LOCAL ENVIRONMENT
d-electrons matrix Single-nanoparticle sensors Feldmann et al, Nano Letters 2007 Strong local dipole field Biological markers, tracking of individual receptors in neurons Dahan et al, Science 2003
11
Plasmons pour les physiciens nucléaires
12
GIANT DIPOLE RESONANCE
Photo-absorption cross section of 12C nucleus
13
Les autres plasmons
14
BULK AND SURFACE PLASMONS
Landau damping bulk plasmon, 3DEG Plasmon band, semiconductor multilayer surface plasmon 2D plasmon, 2DEG electron-hole excitations
15
Plasmonique = plasmons + optique
16
PLASMON PROPAGATION IN MICROSTRUCTURES
Surface plasmon subwavelength optics Ebbesen et al, Nature 2003 Plasmon-based miniaturized optical elements
17
Plasmons pour la physique mésoscopique
cohérence quantique interaction él-él dans un système confiné régime semi-classique a > λF évolution temporelle des systèmes finis décohérence et dissipation des états collectifs
18
SIZE-OSCILLATIONS OF THE LINEWIDTH
Drude, τ‾1 confinement, a < τ vF Kawabata & Kubo, 1966 Doremus, J. Chem. Phys. 1965 Na Nonmonotonic behavior !! gamma^osc: rough estimation (curve: from numerical integration) in addition of gamma^0 Time-Dependent Local Density Approximation R.A. Molina et al., PRB 2002, EPJD 2003
19
COLLECTIVE AND RELATIVE COORDINATES
relative coordinates: mean field center of mass: harmonic oscillator One-particle potential: uniform jellium background with a Coulomb tail plasmon coupling: dipole field
20
SEMICLASSICAL APPROACH
particle and hole angular-momentum-restricted DOS : in agreement with TDLDA calculations Experiments ? gamma^osc: rough estimation (curve: from numerical integration) in addition of gamma^0 Half-width for noble metals ? Temperature ? G. Weick et al., PRB 2005 & 2006
21
SPILL-OUT INDUCED RED-SHIFT
TDLDA Bréchignac et al, PRL 1993 Lamb shift ? Jellium model ? \tilde omega_M: “zero-order approximation” Spill-out from from semiclassics Temperature ? TDLDA G. Weick et al., PRB 2006
22
Plasmons et optique femto-seconde
Femto = la bonne échelle pour la dynamique électronique
23
TIME RESOLVED EXPERIMENTS, POMP-PROBE
Differential transmission (ps) (eV) ps ps ps ps f(E): juste une image naïve “Thermalisation” energy transfer to the matrix e-phonons scattering relaxation to the lattice cooling of the distribution correlated electrons collective modes nonthermal regime e-e & e-surface scattering, thermal distribution Slowdown of relaxation at the resonance ! Bigot et al., Chem. Phys., 2000
24
ANOMALY CLOSE TO THE RESONANCE
Emphasize the importance & relevance of this result G. Weick et al., EPL 2007
25
Description quantique du plasmon
Plasmons comme excitations collectives Description quantique du plasmon
26
DISCRETE (MATRIX) RPA Hartree-Fock + Residual interaction :
(symmetrized) Coulomb matrix element α, β, γ, and δ : single-particle (Hartree-Fock) states Separable residual interaction : Emphasize the importance & relevance of this result Diagonalization in the one-particle-hole basis (RPA) :
27
PLASMON AS A COLLECTIVE EXCITATION Landau damping γ and Lamb shift δ
RPA eigenenergies : C. Seoánez et al., EPJ D 2007 TDLDA E S(E) Plasmon = superposition of low-energy e-h coupled to high-energy e-h Plasmon Emphasize the importance & relevance of this result Landau damping γ and Lamb shift δ
28
Optique quantique avec les plasmons
29
Rabi frequency system: plasmon, excitation: bath: high-energy e-h,
REDUCED DENSITY MATRIX FOR THE PLASMON system: plasmon, center of mass, collective coordinate excitation: laser field Rabi frequency bath: high-energy e-h, relative coordinates density matrix of the electron gas H_cm: not a perfect harmonic oscillator (damping) H_cm: in one direction (z) Density matrix -> time-evolution, coherences, thermalization (Quantum Optics) But here: we restrict ourselves to the populations coupling: dipole field reduced density matrix (center of mass system) equation of motion for
30
BLOCH EQUATIONS FOR THE PLASMON Markovian approximation justified
free evolution coupling (perturbation) correlation function of the bath: Markovian approximation justified populations coherence
31
COHERENCE EFFECTS FOR THE PLASMON
G. Weick et al., EPJ D 2007
32
Plasmons et spins
33
SPIN DIPOLE EXCITATION exchange-correlation
Hartree = 0 exchange-correlation (local) kinetic: (Thomas-Fermi)
34
LOCAL APPROXIMATION FOR XC
exchange correlation equilibrium charge TDLDA Spin-dipole frequency:
35
IS THE SPIN DIPOLE A COLLECTIVE EXCITATION ? HF + residual interaction
S(E) ~ΔE1 Hartree-Fock HF + residual interaction \tilde omega_M: “zero-order approximation” the spin-dipole is an e-h excitation
36
Conclusion et prospectives
37
CONCLUSIONS PERSPECTIVES
Plasmons in nanoparticles: many-body dynamics, quantum coherence, dissipation classical and quantum descriptions, collective excitation center of mass and relative coordinates mesoscopic effects: size-oscillations of the half-width coherence effects: time-dependence of the reduced DM electronic dynamics in pump-and-probe experiments PERSPECTIVES Driven nanoparticles: quantum coherence effects, sidebands in the absorption Plasmonics: plasmon interaction and transfer between nano-objects Spin effects: spin-dipole excitation, coupling of charge and spin Magnetic nanoparticles: fast dynamics of the magnetization, collective excitations
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.