Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parAmorette Moret Modifié depuis plus de 10 années
1
Ch 5 Cinématique et dynamique newtoniennes
2. Quelques mouvements 3. Première loi de Newton 4. Deuxième loi de Newton 5. Troisième loi de Newton
2
1.1. Le vecteur position z M OM = x.i + y.j + z.k y x OM y
1.Cinématique 1.1. Le vecteur position Soit OM le vecteur position d’un point M mobile. z M OM = x.i + y.j + z.k y x OM y
3
1.2. Le vecteur vitesse Le vecteur vitesse moyen est: z M-1 M M+1 y x
4
Le vecteur vitesse instantanée est:
x’ v y’ z’
5
1.3. Le vecteur accélération
Le vecteur accélération est la variation du vecteur vitesse en fonction du temps. x’’ a y’’ z’’
6
1.4. Le vecteur quantité de mouvement
Le vecteur quantité de mouvement d’un système ponctuel de masse m est le produit de sa masse par son vecteur vitesse.
7
2. Quelques mouvements Faire activité expérimentale 1 2.1 Mouvement rectiligne uniforme Dans un référentiel donné, un système ponctuel a un mouvement rectiligne uniforme si son vecteur vitesse est constant (même valeur, même direction, même sens). Son vecteur accélération est égale au vecteur nul.
8
2.2 Mouvement rectiligne uniformément varié
Dans un référentiel donné, un système ponctuel a un mouvement rectiligne uniformément varié si son vecteur accélération est constant (même valeur, même direction, même sens).
9
2.3. Mouvement circulaire uniforme
Dans un référentiel donné, un système ponctuel a un mouvement circulaire uniforme si sa trajectoire est un arc de cercle de rayon R et la valeur de sa vitesse V est constante. Son vecteur accélération est toujours orienté vers le centre du cercle (accélération centripète) et a pour valeur: Soit: Avec le vecteur normal de la base de Frenet.
10
2.4. Mouvement circulaire non uniforme
Dans un référentiel donné, un système ponctuel a un mouvement circulaire non uniforme si sa trajectoire est un arc de cercle de rayon R et la valeur de sa vitesse V varie. Son vecteur accélération est quelconque et a pour expression: Avec le vecteur normal et le vecteur tangentiel de la base de Frenet
11
3. Première loi de Newton La première loi ou principe d’inertie (Galilée) dit: Dans un référentiel galiléen, si le vecteur vitesse d’un système ponctuel est constant alors la somme des forces extérieures qui lui sont appliquées est nulle. Ou aussi: si la somme des forces qui s’appliquent à un système ponctuel est nulle alors il est soit au repos soit en mouvement rectiligne uniforme, dans un référentiel galiléen. Un référentiel galiléen est un référentiel où le principe d’inertie est respecté.
12
4. Deuxième loi de Newton D’après l’activité expérimentale 1 . Dans un référentiel galiléen, la somme des forces extérieures appliquées à un système ponctuel est égale à la variation par rapport au temps de son vecteur quantité de mouvement.
13
5. Troisième loi de Newton
La troisième loi de Newton ou le principe d’interaction dit: La force qu’exerce un corps A sur un corps B est exactement égale à la force qu’exerce ce corps B sur le corps A, mais de sens opposés. FA/B = - FB/A
14
6. Conservation de la quantité de mouvement
Activité expérimentale 2: A l’aide des enregistrements vidéo, à 10 image par seconde ( dt = 0,10 s), de 2 mobiles autoporteur (masses: mobile de gauche m1 =1,48 kg et mobile de droite m2 = 0,98 kg) et du logiciel « atelier scientifique », vérifier la conservation de la quantité de mouvement. (paramètrage;2 points) La quantité de mouvement d’un système isolé se conserve Exercices n° 1, 2, 3, 12, 16, 18, 26, 28, 30 et 34 p 143
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.