Télécharger la présentation
1
Optimisation des Trajets de Collecte
Réalisé par : Eymat Loïc Fournier Jérémy Garon Sébastien Grange Benoît Moutmir Hamza Senhaji Mohammed Responsable pédagogique : Pellegrini François Responsables scientifiques : Sopena Eric et Dussech Bruno
2
Plan Présentation du projet Approche théorique et solutions proposées
Contexte du projet Analyse de l’existant Approche théorique et solutions proposées Constitution de zones Constitution de cycles Constitution de tournées Réalisation Données de départ Structure Données retournées à l’utilisateur Recherche et amélioration Tests Conclusion
3
Contexte du projet (1) Ce projet s’inscrit dans le cadre du projet de fin d’années à l’ENSEIRB. Le projet est proposé par le LaBRI dans le but de développer une plate-forme logicielle à destination des professionnels de la collecte des déchets ménagers pour la société ECOBOX.
4
Contexte du projet (2) Notre projet se découpe en deux parties :
Constituer des zones de ramassage à partir de tronçons de ramassage ; Puis déterminer un cycle qui minimisera le trajet entre les zones, le cycle étant découpé en morceaux que nous appellerons tournées.
5
Analyse de l’existant Les algorithmes « RAI » et « Hongrois », permettant de créer le cycle, ont déjà été implémentés et ont été fournis par le client lors du démarrage du projet. Il faut donc adapter ces algorithmes et implémenter l’algorithme « KMEANS » d’une part et éventuellement rechercher d’autres algorithmes permettant de résoudre les mêmes problèmes.
6
Plan Approche théorique et solutions proposées Présentation du projet
Contexte du projet Analyse de l’existant Approche théorique et solutions proposées Constitution de zones Constitution de cycles Constitution de tournées Réalisation Données de départ Structure Données retournées à l’utilisateur Recherche et amélioration Tests Conclusion
7
Approche théorique et solutions proposées
Constitution de zones Présentation de l’algorithme « KMEANS » Adaptation au problème Choix de l’initialisation Problèmes rencontrés Constitution de cycles Présentation de l’algorithme « Hongrois » Présentation de l’algorithme « RAI » Constitution de tournées
8
Constitution de zones Le but est de constituer des zones, c’est à dire de regrouper des points proches, de manière à diminuer le nombre d’entités manipulées lors de la constitution d’un cycle.
9
Présentation de l’algorithme « KMEANS »
L’algorithme « KMEANS » permet le partitionnement d’un groupe d’objets en K sous-groupes. L’algorithme « KMEANS » fonctionne de la manière suivante : Choisir un nombre de zones initial K eut et gard au nombres de points à traiter ; Tirer aléatoirement K points qui seront les centres de zone Attacher chaque point à son centre de zone le plus proche Calculer le nouveau centre de chaque zone Réitérer les deux dernières opérations jusqu’à stabilité
10
Adaptation au problème (1)
Nous ne pouvons pas utiliser cet algorithme tel quel car nous ne connaissons pas à l’avance le nombre de zones K, celui-ci dépend en effet de divers paramètres : le poids maximum d’une zone ; le coût maximum d’une zone ; les caractéristiques des points. Nous allons donc utiliser une version dynamique de l’algorithme « KMEANS ».
11
Adaptation au problème (2)
Le fonctionnement de l’algorithme est le suivant : Nous évaluons un nombre de zones initiales k en fonction du poids total à collecter et du poids maximum d’une zone ; Nous choisissons k points qui seront les centres de zone soit de manière aléatoire, soit en quadrillant la carte ; Chaque point est rattaché au centre de zone le plus proche ; Nous parcourons toutes les zones en vérifiant qu’aucune ne dépasse le poids ou le coût maximum ; Tant qu’il existe des zones invalides, nous divisons ces zones en deux puis nous vidons toutes les zones et rattachons chaque point au centre de zone qui lui est le plus proche.
12
Choix de l’initialisation
Initialisation aléatoire : Il s’agit simplement de tirer aléatoirement les k points qui deviendront des centres de zone parmi tous les points. Initialisation avec quadrillage de la carte : Nous commençons par rechercher les quatre points ayant les coordonnées extrêmes afin de connaître le rectangle dans lequel sera situé chaque point; Ensuite nous créons k centres de zones fictifs de manière a obtenir un quadrillage régulier. Nous rattachons chaque point au centre fictif le plus proche.
13
Problèmes rencontrés Il était impératif que le résultat de notre algorithme soit reproductible, de manière a en mesurer l’efficacité. Nous avions donc pensé écarter tout appel à l’aléatoire. En fait nous pouvons faire appel à la fonction rand() en fixant la constante de départ grâce a srand(). Nous obtenons ainsi le même tirage à chaque exécution. Lorsqu’une zone doit être divisé, nous avons choisi de sélectionner le nouveau centre de manière déterministe. Nous choisissons comme centre de la deuxième zone le deuxième centre de la zone (ie le centre de la zone privée du centre).
14
Approche théorique et solutions proposées
Constitution de zones Présentation de l’algorithme « KMEANS » Adaptation au problème Choix de l’initialisation Problèmes rencontrés Constitution de cycles Présentation de l’algorithme « Hongrois » Présentation de l’algorithme « RAI » Constitution de tournées
15
Construction de cycles
Une fois les zones construites, le but est de constituer un chemin de collecte dont le cycle est minimal. Ce problème est également connu sous le nom de ATSP (Asymetric Travelling Salesman Problem). Nous avons implémenté deux solutions à ce problème : Un premier algorithme, appelé algorithme Hongrois construis une matrice de 1 et de 0 (les 1 montrent l’adjacence des deux zones) tel que la somme des coûts où se situent les 1 soit minimal. Un deuxième appelé RAI construisant un cycle par ajout/suppression de zones à un cycle considéré comme étant minimal.
16
Présentation de l’algorithme « Hongrois » (1)
L’algorithme hongrois comporte six étapes : Réduction des lignes : créer une nouvelle matrice des coûts en choisissant la coût minimal de chaque ligne et en le soustrayant à chaque coût sur cette ligne ; Trouver un zéro dans la matrice : s’il n’y a aucun zéro marqué dans la ligne ou la colonne , marquer ce zéro. Réitérer ceci pour tous les zéros puis aller à l’étape 3 ; Déterminer le nombre minimal de lignes nécessaires sur les lignes et les colonnes pour couvrir tous les zéros. Si ce nombre est égal au nombre de lignes, la matrice est réduite, passer à l’étape 6 ;
17
Présentation de l’algorithme « Hongrois » (2)
Trouver un zéro non couvert et le primer. S’il n’y a aucun zéro marqué dans sa ligne, aller à l’étape 5. Sinon couvrir cette ligne et découvrir sa colonne. Reproduire cette procédure tant qu’il y a des zéros non-couverts. Retenir la plus petite valeur Z0 de ces zéros non couverts et aller à l’étape 6 ; Construire une série alternée de zéros primés et marqués comme suit, soit Z1 le zéro marqué de la colonne de Z0 s’il existe, et Z2 le zéro primé de la ligne de Z1. Continuer ainsi de façon à ce que la série termine lorsqu’un zéro primé n’ait aucun zéro marqué dans sa colonne. Démarquer tous les zéros marqués de la série, marquer tous les zéros primés, transformer les zéros primés en non primés et découvrir chaque ligne de la matrice. Retourner à l’étape 3. Ajouter la valeur trouvée à l’étape 4 à tous les éléments de chaque ligne couverte, et l’ôter de tous les éléments de chaque colonne non couverte. Retourner à l’étape 4.
18
Présentation de l’algorithme « RAI » (1)
L’algorithme RAI comporte dix étapes : Initialisation : on choisit un sommet au hasard, le cycle est alors constitué seulement de ce sommet ; Choisir un sommet qui n’est pas encore dans le cycle ; Insérer ce sommet de façon optimum. Si le cycle n’est pas complet, retourner à l’étape 2 ; Soit S la solution trouvée ; Répéter 2n2 fois les étapes 6 à 10 ; Choisir aléatoirement deux entiers i et j (entre 1 et le nombre de zones, avec i < j) Enlever la portion du sommet i au sommet j, et refermer le cycle; Choisir aléatoirement un sommet dans la portion enlevée ; Insérer ce sommet de façon optimum. Si le cycle n’est pas complet, retourner à l’étape 8 ; Comparer la solution trouvée à la solution S et garder la meilleure.
19
Présentation de l’algorithme « RAI » (2)
L’algorithme RAI a été implémenté de deux façons différentes : Avec un tableau de taille fixe et une représentation séquentielle du cycle. Avec un tableau de taille fixe géré en liste chaînée.
20
Approche théorique et solutions proposées
Constitution de zones Présentation de l’algorithme « KMEANS » Adaptation au problème Choix de l’initialisation Problèmes rencontrés Constitution de cycles Présentation de l’algorithme « Hongrois » Présentation de l’algorithme « RAI » Constitution de tournées
21
Constitution de tournées
Construire des tournées consiste à répartit les zones à collecter entre les bennes à ordure dont nous disposons. Une manière de le faire consiste à à découper le cycle en tranches dont le poids est borné par les capacités maximum des bennes. On obtient ainsi un découpage du cycle, chaque tranche étant collectée par une benne. Si le nombre de tranches du cycle est supérieur au nombre de bennes dont on dispose, un deuxième tour de collecte doit être lancé. La notion de tours est laissée au soin de l’utilisateur : celui-ci clonera des bennes s’il décide de leur faire faire un deuxième tour.
22
Plan Réalisation Présentation du projet
Contexte du projet Analyse de l’existant Approche théorique et solutions proposées Constitution de zones Constitution de cycles Constitution de tournées Réalisation Données de départ Structure Données retournées à l’utilisateur Recherche et amélioration Tests Conclusion
23
Données de départ Conformément au cahier des charges, le client fourni les coordonnées entières de chaque point de la carte dans un tableau. De la même manière, l’utilisateur devra fournir le coût de chaque rue ainsi que le poids de chacune des rues dans un tableau de réels.
24
Structure (1) La structure point contient outre l’indice du point, un pointeur sur le point suivant. Structure zone : Pointeur vers la zone suivante Numéro de la zone Poids de la zone Coût de la zone Liste des points qu’elle contient Centre de la zone
25
Structure (2) Lors de la construction de zones, il est nécessaire de connaître un certain nombres de constantes, nous les avons regroupés dans la structure configuration. Structure configuration : Nombre de points de la carte Type d’initialisation choisie Nombre de tours maximal Poids maximal d’une zone Poids minimal d’une zone Coût maximal d’une zone Coût minimal d’une zone Coût minimal entre deux centres de zone
26
Structure (3) Nous avons également créé une structure benne :
Numéro de la benne Charge maximal Ainsi que la structure tournée : Numéro de benne associé (1 benne = 1 tournée) Poids total Coût total Indices des zones collectés lors de cette tournée Pointeur sur la prochaine tournée
27
Données retournées à l’utilisateur
Les données exploitables par l’utilisateur sont : Un pointeur sur une liste chaînée de zones : zone * zones; Un pointeur sur une liste chainée de tournées : Tournee * tournees;
28
Plan Recherche et amélioration Présentation du projet
Contexte du projet Analyse de l’existant Approche théorique et solutions proposées Constitution de zones Constitution de cycles Constitution de tournées Réalisation Données de départ Structure Données retournées à l’utilisateur Recherche et amélioration Tests Conclusion
29
Recherche et amélioration (1)
Les algorithmes génétiques appartiennent à la famille des algorithmes méta heuristiques dont le but est d’obtenir une solution approchée à un problème d’optimisation. Le principe de ce type d’algorithmes est de se rapprocher par ``bonds’’ successifs d’une solution grâce à la notion de sélection naturelle.
30
Recherche et amélioration (2)
La sélection naturelle : la sélection des individus est effectuée en fonction du critère à optimiser, les principaux types de sélection sont : La sélection par rang ; La sélection proportionnelle à l’adaptation ; La sélection par tournoi ; La sélection uniforme.
31
Recherche et amélioration (3)
Nous présentons ci-après des pistes qui pourraient permettre de résoudre le problème du voyageur de commerce à l’aide d’un algorithme génétique. Fonction d’adaptation d’un chemin : sa longueur (ou son coût de passage entre les zones). Procédure de croisement : Choisir aléatoirement deux points de découpe que nous appellerons « locus » ; Intervertir les zones qui se trouvent entre ces deux locus ; Éliminer les zones à l’extérieur des locus qui se trouvent déjà à l’intérieur des locus ; Recenser les zones qui ne figurent pas dans ces deux cycles ; Compléter les cycles aléatoirement avec les zones recensés précédemment.
32
Recherche et amélioration (4)
Procédure de mutation : permuter deux zones présentes dans le cycle L’objet que l’on cherche à optimiser est un cycle, il se peut que deux cycles soient identiques à une rotation près. Une solution possible est d’imposer une zone par laquelle devront commencer tous les cycles (par exemple la zone de dépôt des bennes à ordures).
33
Recherche et amélioration (5)
Cet algorithme présente en inconvénient important : il est parfaitement adapté pour un espace de solutions très grand, par contre pour un nombre de points réduit ou raisonnable, il est peut être plus sur de parcourir cet espace de façon exhaustive. Le gros avantage de cet algorithme est qu’il s’adapte parfaitement à l’environnement dans lequel il est placé.
34
Plan Tests Présentation du projet
Contexte du projet Analyse de l’existant Approche théorique et solutions proposées Constitution de zones Constitution de cycles Constitution de tournées Réalisation Données de départ Structure Données retournées à l’utilisateur Recherche et amélioration Tests Conclusion
35
Tests (1) Nous allons ici comparer les résultats obtenues avec nos différents algorithmes : L’algorithme KMEANS avec initialisation aléatoire et avec initialisation par quadrillage ; L’algorithme KMEANS avec différents paramètres ; L’algorithme hongrois et l’algorithme RAI. Les tests sont réalisés à l’aide du jeu de tests réel fourni par le client.
36
Tests (2) Comparaison des deux initialisations de KMEANS :
Initialisation aléatoire Initialisation par le quadrillage Temps de calcul 0,5s 0,7s Nombre de zones crées 52 49 Résultat Insérer fig 5.1 Insérer fig 5.2
37
Poids max d’une zone : entre 500 et 3000 (ie avec fusion)
Tests (3) Tests de l’algorithme KMEANS avec différents paramètres : Poids max d’une zone : 1000 Poids max d’une zone : entre 500 et 3000 (ie avec fusion) Poids max d’une zone : 3000 Temps de calcul 0,7 s 0,4 s 0,5 s Nombre de zones crées 207 47 52 Résultat 5.3 5.4 5.1
38
Tests (4) Comparaison entre les deux algorithmes qui créent un cycle. Les tests ont été réalisés dans le cas suivant : poids maximum d’une zone : 2000, initialisation aléatoire, poids minimum d’une zone 300. Ceci conduit à 74 zones. Avec l’algorithme hongrois , le résultat de l’algorithme est quasi instantané et la longueur du cycle est Avec l’algorithme RAI , le temps de calcul est d’environ 0,3s et la longueur du cycle est Sur ce jeu de test, l’algorithme RAI est nettement plus efficace : sa solution est environ 10% moins longue que celle proposée par l’algorithme hongrois.
39
Tests (5) Insertion calcul cycle rai (5.6)
40
Tests (6) D’autres jeux de tests pourraient nous permettre de confirmer, ou au contraire d’infirmer les observations réalisées avec ce jeu de test. Cependant ces tests sont tout à fait cohérents et aucune aberration n’a été notée. De plus, nous pouvons noter que le temps de calcul nécessaire pour trouver une solution est tout a fait acceptable.
41
Plan Conclusion Présentation du projet
Contexte du projet Analyse de l’existant Approche théorique et solutions proposées Constitution de zones Constitution de cycles Constitution de tournées Réalisation Données de départ Structure Données retournées à l’utilisateur Recherche et amélioration Tests Conclusion
42
Conclusion Ce projet fut très intéressant et enrichissant du point de vue organisationnel même si les motivations de chacun étaient diverses. Il nous a permis d’utiliser de nouveaux outils de communication (svn, wiki, liste de diffusion). Tous les objectifs fixés dans le cahier des charges ont été atteints, mais par manque de temps l’implémentation d’autres solutions n’a pas pu être réalisée.
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.