Télécharger la présentation
1
Analyse de hotspots de criminalité
Conception d’un modèle d’analyse multidimensionnelle de données spatialement continues (SOLAP raster) Analyse de hotspots de criminalité Jean-Paul Kasprzyk, doctorant Réunion du comité de thèse: Jean-Paul Donnay, Thérèse Libourel, Marc Simon, Jef Wijsen Novembre 2013
2
Plan de l’exposé Introduction: business intelligence
Modèle SOLAP raster Application: analyse de hotspots de criminalité Performance d’un SOLAP raster Conclusions Formation doctorale
3
Plan de l’exposé Introduction: business intelligence
Modèle SOLAP raster Application: analyse de hotspots de criminalité Performance d’un SOLAP raster Conclusions Formation doctorale
4
Les données: aspect transactionnel
Introduction: business intelligence
5
Les données: aspect décisionnel
Introduction: business intelligence Les données: aspect décisionnel Le volume des données numériques croit exponentiellement
6
Business Intelligence
Introduction: business intelligence Business Intelligence Architecture d’un système BI (Badard et al, 2009)
7
Introduction: business intelligence
SOLAP Les outils SOLAP actuels ne gèrent l’information spatiale qu’à travers le mode vectoriel Pas de gestion de l’information spatialement continue Intérêt d’un SOLAP en mode maillé (raster)
8
Plan de l’exposé Introduction: business intelligence
Modèle SOLAP raster Application: analyse de hotspots de criminalité Performance d’un SOLAP raster Conclusions Formation doctorale
9
Modèle SOLAP raster: généralités
Objet de l’article « Le raster en tant que mesure dans un modèle SOLAP relationnel » Etat de l’art: (Miquel et al, 2002 ; Ahmed & Miquel, 2005 ; Vaisman & Zimanyi, 2009 ; Gomez et al, 2012) Principes de base Modèle Relationnel OLAP Schéma en étoile, en flocon de neige ou en constellation Cube de données = collection d’images géoréférencées couvrant un même territoire Une vue du cube = agrégation d’un ensemble d’images par opération locale de « map algebra » (Tomlin, 1983) La sélection des images à agréger dépend des dimensions non spatiales
10
Relation fait raster Modèle SOLAP raster Un raster O = Propriété:
r x c pixels de valeur v où et Une fonction de géoréférenciation : Propriété: Une relation fait raster F = collection de mesures raster de même domaine Les dimensions non spatiales sont reliées à la table des faits comme dans un SOLAP classique
11
Agrégation des mesures raster
Modèle SOLAP raster Agrégation des mesures raster Agrégation de n rasters Agrégation d’un raster en une valeur unique Agrégation spatiale d’un raster Fonction d’agrégation α appliquée entre pixels homologues Fonction d’agrégation α appliquée sur l’ensemble des pixels de O Cas 1: intersection avec un raster binaire (objet spatial) Cas 2: intersection avec un objet vecteur Fonction d’agrégation α appliquée à un sous-ensemble de pixels de O
12
Schéma en étoile ou en flocon de neige
Modèle SOLAP raster D2 D1 Schéma en étoile Fait_raster D spatiales (raster ou vecteur) Dn Dimension spatiale liée par jointure spatiale Dimension non spatiale liée par jointure relationnelle Jointure d’une dimension non spatiale d’un schéma en flocon de neige
13
Changement d’échelle Modèle SOLAP raster Fact_table_NO Fact_table_NE
Fact_table_SO Fact_table_SE
14
Schéma en constellation
Modèle SOLAP raster Dimensions non spatiales Schéma en constellation Même nombre de faits par table Toutes les mesures sont des images de même taille Une table des faits une fonction de géoréférenciation Un niveau d’échelle une résolution (une bandwidth) Un jeu de dimensions spatiales raster par « coverage » Taille de l’entrepôt = F+4F+16F+32F+… Alternative: une seule table des faits avec plusieurs mesures raster Tables des faits Dimensions spatiales raster Dimensions spatiales vecteur (F NO NE SO SE)
15
Modèle SOLAP raster Représentations Une vue d’un cube raster correspond à l’agrégation des mesures raster selon les membres de plusieurs dimensions La représentation d’une vue dépend du nombre de dimensions visibles « 0 » D 1 D 1D 2D
16
Pourquoi du ROLAP? ROLAP: opérations dans un SGBD relationnel
Modèle SOLAP raster Pourquoi du ROLAP? ROLAP: opérations dans un SGBD relationnel Traitements plus longs Grande capacité de stockage Supporte le format raster MOLAP: opérations dans un système multidimensionnel Traitements moins longs Capacité de stockage limitée Ne supporte pas (encore) le format raster Temps de traitement relatifs d’un SOLAP raster Sélection des données Agrégation des données Partie optimisée par un MOLAP négligeable dans un SOLAP raster
17
Plan de l’exposé Introduction: business intelligence
Modèle SOLAP raster Application: analyse de hotspots de criminalité Performance d’un SOLAP raster Conclusions Formation doctorale
18
But de l’application Application: analyse de hotspots de criminalité
Crime.csv Localisation Type de crime Date ETL Entrepôt Serveur R-SOLAP raster Serveur M-SOLAP vecteur Analyse de la criminalité spatialement discrète Analyse de la criminalité spatialement continue (hotspots)
19
Estimation de densité par noyau (KDE)
Application: analyse de hotspots de criminalité Estimation de densité par noyau (KDE) Technique très populaire pour la génération et la visualisation de hotspots Hotspots utilisés, entre autres, en criminalité pour de la prédiction Principe: Transformation de données ponctuelles en un champ continu (raster) Chaque cellule a comme valeur une fréquence dépendant du nombre de points à proximité Les hotspots sont isolés par classification de l’image (quantiles) KDE Classification
20
Propriété d’un KDE + = Application: analyse de hotspots de criminalité
Si sont de même taille, même résolution, et même « bandwidth » = +
21
Intérêt technique de l’application
Application: analyse de hotspots de criminalité Performance d’un SOLAP raster diminue avec: Nombre de dimensions non spatiales Taille des images Génération de hotspots Nécessite peu de dimensions Type de crime Temps (espace) KDE nécessite deux paramètres Bandwidth: indépendant de la taille de l’image dépendant de l’échelle d’analyse Résolution: influence sur la taille de l’image MAIS peu d’influence sur le résultat utilisation de « petites images » (entre 200 et 600 ko non compressé) (Chainey, 2013): 150 x 150 ArcGIS: 250 x 250
22
Présentation des données
Application: analyse de hotspots de criminalité Présentation des données Données de criminalité londonienne provenant de la « Metropolitan Police » et de la « City of London Police » Territoire d’environ 50km X 50km Année 2012 Fichiers CSV: Environ crimes Données par mois et par type de crimes Latitude / longitude en WGS84 Fichiers KML Environ polygones des zones de police par mois
23
Types de crime Application: analyse de hotspots de criminalité
Type de crime Occurrences Anti-social behaviour 348806 Other theft 192893 Violent crime 136324 Vehicule crime 96843 Burglary 94679 Criminal damage and arson 60638 Drugs 48659 Other crime 48464 Shoplifting 37068 Robbery 35528 Public disorder and weapons 30744
24
Modèle conceptuel (UML)
Application: analyse de hotspots de criminalité SOLAP Raster SOLAP classique … Raster_fact Crime_fact ID_fact Month Crime_type ID_crime Month Crime_type 1 0-N Changement d’échelle 0-N 1-N Force_boundary ID_force Month
25
Intégration des données
Application: analyse de hotspots de criminalités Alimentation de la table « crime_fact » ( faits) Alimentation de la table « force_boundary » Suppression des données sans localisation Conversion latitude/longitude en « geometry » Projection dans British National Grid (SRID 27700) Suppression des données en dehors de la zone d’étude Etablissement du lien relationnel entre « crime_fact » et « force_boundary » Export de 132 shapefiles de points pour chaque croisement de dimension « crime_type-month » Génération de 132 images KDE Resolution: 300m Bandwidth: 1500m Alimentation de la table « raster_fact » Mise à jour des dimensions de la table « raster_fact » …
26
Application: analyse de hotspots de criminalités
Vue raster_column
27
Comparaison SOLAP raster – SOLAP vecteur
Application: analyse de hotspots de criminalité Comparaison SOLAP raster – SOLAP vecteur « Quelle est la répartition spatiale de la criminalité générale pour l’année 2012? » Requête la plus lourde possible Entrepôt raster Entrepôt classique Addition des 132 images: environ 35 sec Sélection des entrées: environ 27 sec KDE sur les données: environ 52 sec TOTAL: environ 79 sec
28
Exemples de requête Application: analyse de hotspots de criminalité
« Quels sont les hotspots de criminalité liée à la drogue pour le premier trimestre 2012? » Stretch « standard deviation » Fact107 + fact207 + fact307
29
Exemples de requête Application: analyse de hotspots de criminalité
« Quels sont les hotspots de criminalité liée à la drogue pour le premier trimestre 2012? » Ajout de la couche « Pub raster »
30
Exemples de requête Application: analyse de hotspots de criminalité
« Quels sont les pubs générateurs de criminalité liée à la drogue pour le premier trimestre 2012? » - Slice couche « Pub raster » Zoom in Pub*(measure)
31
Exemples de requête Application: analyse de hotspots de criminalité
« Quels sont les pubs générateurs de criminalité liée à la drogue pour le premier trimestre 2012? » Ajout couche « Pub point » Shoreditch Soho
32
Exemples de requête Application: analyse de hotspots de criminalité
« Quels sont les pubs générateurs de criminalité liée à la drogue (poids: 2) et aux armes (poids: 1) pour le premier trimestre 2012? » Shoreditch Soho (2*(fact107+fact107+fact107)+(fact106+fact206+fact306))*pub
33
Exemples de requête Application: analyse de hotspots de criminalité
«Quel est le nombre de crimes liés à la drogue et aux armes par force de police de mars 2012? » Drill across Add dimension force_boundary
34
Application: analyse de hotspots de criminalité
3 mois plus tard…
35
Exemples de requête Application: analyse de hotspots de criminalité
« Quels sont les pubs générateurs de criminalité liée à la drogue pour le premier trimestre 2012? » Retour à la vue précédente Shoreditch Soho (Fact107 + fact207 + fact307)*pub
36
Exemples de requête Application: analyse de hotspots de criminalité
« Quels sont les pubs générateurs de criminalité liée à la drogue pour le second trimestre 2012? » Cranbrook Estate Shoreditch Soho (Fact407 + fact507 + fact607)*pub
37
Exemples de requête Application: analyse de hotspots de criminalité
« Quelle est l’évolution des pubs générateurs de criminalité liée à la drogue entre le premier trimestre et le second trimestre 2012? » Evolution avec la vue précédente Zoom out Cranbrook Estate Shoreditch Soho Mesure - mesure(-1)
38
Exemples de requête Application: analyse de hotspots de criminalité
« Quelle est l’évolution des hotspots de criminalité liée à la drogue entre le premier trimestre et le second trimestre 2012? » Suppression de la dimension spatiale pub (Fact407 + fact507 + fact607) -(Fact107 + fact207 + fact307)
39
Optimisation du paramétrage des KDE
Application: analyse de hotspots de criminalité Optimisation du paramétrage des KDE Prediction accuracy index (PAI) Indice utilisé en crime mapping pour évaluer la qualité de prédiction de hotspots PAI = PAI permet d’évaluer la qualité du paramètre « bandwidth » d’un KDE A exploiter pour optimiser le paramétrage des KDE au moment de l’intégration des données Rappel: une « bandwidth » par niveau d’échelle pour garder des images comparables (nombre de crimes dans hotspots / nombre de crimes total) (surface de hotspot / surface d’étude)
40
Plan de l’exposé Introduction: business intelligence
Modèle SOLAP raster Application: analyse de hotspots de criminalité Performance d’un SOLAP raster Conclusions Formation doctorale
41
Contrainte de performance d’un OLAP
Performance d’un SOLAP raster Contrainte de performance d’un OLAP OLAP report: groupement de chercheurs sur le OLAP créé en 1994 Définition du OLAP en 5 mots-clés Fast Requête simple < 1 sec Requête basique < 5 sec Requête complexe < 20 sec Analysis Shared Multidimensionnality Information
42
Performance d’un SOLAP classique
Performance d’un SOLAP raster Performance d’un SOLAP classique Nombre de faits Nombre de données
43
Performance d’un SOLAP raster
Temps d’agrégation Taille des rasters
44
Performance d’un SOLAP raster
Nombre de faits Nombre de membres
45
Performance d’un SOLAP raster
Nombre de faits Nombre de dimensions non spatiales
46
Plusieurs solutions Garcia Gutierrez & Baumann, 2008:
Performance d’un SOLAP raster Plusieurs solutions Garcia Gutierrez & Baumann, 2008: Pré-agrégation des données Impossible de couvrir toutes les possibilités (infinité) Kang et al, 2013: Etablissement de clusters de rasters Simplification des calculs d’agrégation exemple: A + B + C + D = 2*A + 2*C Perte de précision du résultat final
47
Network OLAP (NOLAP) Solutions précédentes: Solution proposée
Performance d’un SOLAP raster Network OLAP (NOLAP) Solutions précédentes: simplification des calculs Solution proposée Répartir les calculs sur plusieurs serveurs (cloud) Cube de données cube de serveurs Principe: Requête divisée en sous-requêtes Agrégation des crime de type « drugs » et « violent crime » pour l’année 2012 = Agrégation des crimes de type « drugs » pour l’année agrégation des crimes de type « violent crime » pour l’année 2012 Temps d’agrégation divisé par nombre de serveurs
48
Exemple d’architecture NOLAP
Performance d’un SOLAP raster Exemple d’architecture NOLAP Gestion dimension « type de crime » Gestion dimensions spatiales Gestion dimension « temps » Cloud « Quels sont les hotspots de criminalité pour 2012? » Sous-requêtes d’agrégation selon dimension « temps » pour chaque type de crime Anti-social behaviour Other theft Client Requête principale Serveur maître Violent crime Vehicule crime Image finale Agrégation des images renvoyées selon dimension « type de crime » Burglary Criminal damage Chaque serveur renvoie son image d’agrégation Drugs Weapons Deux alternatives Un sous-cube par serveur du cloud table des faits du serveur maître = liste d’adresse vers le cloud Cube complet copié dans chaque serveur Shoplifting Robbery
49
NOLAP: caractéristiques
Performance d’un SOLAP raster NOLAP: caractéristiques Nombre de serveurs croît linéairement avec nombre de membres gérés par le serveur principal (exemple: types de crime) Privilégier cloud pour la dimension temporelle croît exponentiellement avec nombre de dimensions non spatiales Rester raisonnable Temps d’agrégation considérablement diminué MAIS il faut rajouter le temps de transfert des requêtes et des images à travers le réseau Dans notre cas: une image < 600 ko, maximum 11 images transférées Utilisation d’un langage de programmation capable de gérer le « multi tâches »: DotNet, php, …
50
Plan de l’exposé Introduction: business intelligence
Modèle SOLAP raster Application: analyse de hotspots de criminalité Performance d’un SOLAP raster Conclusions Formation doctorale
51
Conclusions Modèle SOLAP raster théorique
Analyse multidimensionnelle de l’information spatialement continue Mesure raster Méthodes d’agrégations spécifiques Modèle en constellation pour le changement d’échelle Application: analyse de hotspots de criminalité SOLAP raster adapté aux besoins et méthodes de la police (KDE) Application originale adaptée au système (petites images, peu de dimensions) Association d’un SOLAP raster et d’un SOLAP classique Intégration d’objets spatiaux à la volée A développer: Interface utilisateur Processus d’intégration des données (choix de la « bandwidth ») Système NOLAP Autres applications possibles: reporting, data mining
52
Plan de l’exposé Introduction: business intelligence
Modèle SOLAP raster Application: analyse de hotspots de criminalité Performance d’un SOLAP raster Conclusions Formation doctorale
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.