La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Mesure des distance 1 : à l’intérieur d’une galaxie

Présentations similaires


Présentation au sujet: "Mesure des distance 1 : à l’intérieur d’une galaxie"— Transcription de la présentation:

1 Mesure des distance 1 : à l’intérieur d’une galaxie
Échelle de distances Indicateurs de distance Relations et méthodes utilisées

2 Pourquoi mesurer les distances
La dimension physique des objets ne peut être déterminée précisément sans les distances Constante de Hubble: expansion de l’Univers âge de l’Univers Dynamique des galaxies en groupes: V = H0D mais en réalité V = H0D + Vpec

3 Différentes méthodes de mesure de distance
0 parallaxes mouvements propres vitesses radiales pc Céphéides RR Lyrae Novae les plus brillantes 3 Mpc (télescope terrestre) 15 Mpc (HST) supernovae amas globulaires nébuleuses planétaires régions HII Mpc Tully-Fisher Faber-Jackson (Dn-s) Surface Brightness Fluctuation 100 Mpc Loi de Hubble 5000 Mpc

4 Première méthode : Parallaxes trigonométriques
# L'angle sous lequel on voit l'orbite de la Terre d'une étoile s'appelle la parallaxe p ou A. Ne pas confondre avec les parallaxes dans le système solaire. # Le parsec : distance à laquelle on verrait une unité astronomique (distance moyenne de l'orbite de la Terre autour du Soleil) sous un angle de 1 seconde d'arc. Première mesure de parallaxe par Bessel en 1838. Parallaxe de 61 Cygni : 0.3 " Etoile la plus proche : Proxima Centauri p = " 1 parsec = u.a. = 3,262 a.l. = 3, m. Mesure à 0,005  " = 50% à 100 pc Précision :

5 Deuxième méthode : utilisation des caractéristiques des étoiles

6 Luminosité # Photométrie : mesure des quantités d'énergie transportées par rayonnement. # Luminosité (L) : énergie lumineuse totale émise par une étoile # Eclat apparent (E) : fraction de la puissance émise par une étoile et reçue sur une surface unité perpendiculaire à la direction de l'étoile. L’éclat varie comme l’inverse du carré de la distance La lumière des astres

7 Eclat et luminosité L'éclat apparent est fonction – du domaine spectral utilisé pour l'observation, – de l'absorption de l'atmosphère et des filtres utilisés. Il ne donne aucune indication sur la distance. Il est faussé par l'absorption interstellaire. Unités : en Watts ou en Jansky (10-16 W . m-2 . Hz-1) et en magnitudes

8 Magnitudes apparentes
Les anciens répartissaient les étoiles en 6 grandeurs : - grandeur 1, les plus brillantes, - grandeur 2 un peu moins brillantes, ... - grandeur 6, à peine visibles à l’oeil. La vision et l’audition suivent la loi de Fechner : sensibilité logarithmique. Maintenant on mesure l’éclat des étoiles dans une échelle logarithmique : la magnitude. m = C1 log E + C2 Echelle raccordée à l'échelle des anciens  loi de Pogson ( )

9 Echelle des magnitudes apparentes

10 Système de magnitude Les mesures d'énergie du rayonnement stellaire sont fonction : - du domaine spectral et de la sensibilité de l'appareil. - de la sensibilité de l'appareil. – domaine visible : magnitudes visuelles mV – plaque photographique magnitudes photographiques mpg ou mpv – cellules photo-électriques et détecteurs électroniques, le domaine de sensibilité dépend de la couche sensible. Si l'on mesure tout le flux : magnitudes bolométriques mB.

11 Systèmes photométriques
On mesure le rayonnement dans des bandes spectrales au moyen de filtres. Un ensemble de filtres choisis forme un système photométrique. Il existe de nombreux systèmes photométriques Caractéristiques des filtres : - centre de la bande passante, - largeur de la bande (largeur à mi-hauteur 90% du flux). système UBV le plus simple et plus répandu : l'ultraviolet (U 365nm, 68nm), le bleu (B 440nm,98nm) le visible (V 550nm, 89nm). Avec l’extension à l’infrarouge : IJKLMN Pour plus de détails, il faut faire de la spectrographie

12 Les spectres des étoiles sont assimilés à des corps noirs à T.
Indice de Couleurs Les spectres des étoiles sont assimilés à des corps noirs à T. lambda l u m i n o s t é T Un indice de couleur mesure le rapport des éclai- rements entre deux parties spectrales d’une étoile. Indépendant de la distance (un bémol avec l’absorption interstellaire). B bleu E Ce rapport est transformé en magnitude. Appelé Indice B – V : rapport flux en B (bleu) et V (visible) V visible E Intérêt de l’indice de couleur

13 rapport flux en B (bleu) et V (visible)
Indice de Couleurs lambda l u m i n o s t é T 1 Directement relié à la Température. Soit deux étoiles de température T1 et T2 E B1 On mesure leurs éclairements en B et V Indice B – V : rapport flux en B (bleu) et V (visible) T 2 E V2 E B2 E V1 bleu visible

14 Les flux dans les filtres donnent :
Indice de Couleurs lambda l u m i n o s t é T 1 Les flux dans les filtres donnent : E B1 En passant en magnitude, l'inégalité s'inverse : T 2 E V2 E B2 E V1 bleu visible L’Indice de couleurs est bien relié à la Température. Il est indépendant de la distance de l’étoile

15 Antarès 100 millions de fois plus lumineuse que Pr. Centauri
Magnitudes absolues magnitude d'un objet situé conventionnellement à la distance de 10 pc La magnitude absolue est une caractéristique de l’étoile envisagée Elle est reliée à la magnitude apparente par la formule suivante : La distance d est impérativement en parsecs m - M s’appelle le module des distances indépendant du domaine spectral utilisé. Quelques Magnitudes absolues : Rapports des flux ? FAntarès / FSoleil Soleil : L = 4.79 Antarès : -4.6 FSoleil / FPr. Centauri Proxima Centauri : Antarès 100 millions de fois plus lumineuse que Pr. Centauri

16 Diagramme HR Classer les étoiles par leur luminosité en fonction de la température. Hertzsprung ( ) Etoiles d'amas (même distance) Russel ( ) 1913 – Etoiles proches de distances connues

17 Diagramme HR Températures par analyse spectrale Magnitudes absolues par mesures photométriques et parallaxes. En abscisses : Température = Classe spectrale = Indice (B-V) Remarques : les abscisses décroissent de gauche à droite, les ordonnées décroissent de bas en haut.

18 Méthode des parallaxes spectroscopiques
On mesure les magnitudes apparentes B et V d’une étoile On en déduit son indice de couleur BV Grâce au diagramme HR, on en déduit sa magnitude absolue ou sa luminosité qui donne accès à sa magnitude absolue On utilise la formule liant les deux magnitudes et la distance m - M = 5 log d - 5 On en déduit la distance

19 Diagramme HR d = 10 parsecs

20 Superposons les deux graphiques Même échelle en abscisses et ordonnées
Diagramme HR Amas M11 Superposons les deux graphiques Même échelle en abscisses et ordonnées

21 Diagramme HR Amas M11 et M67 Superposons les deux graphiques Même échelle en abscisses et ordonnées magnitude d’une étoile de l’amas Supposons l’amas 10 fois plus près. Tout l’amas est décalé vers le haut de 5 magnitudes.

22 Diagramme HR Amas M11 Décalage des ordonnées : 13 magnitudes Pour chaque étoile de l'amas : m - M = 13 m - M = 5 log d - 5 d = 4000 pc pamas = 0,00025 "

23 Hipparcos Satellite dédié à l’Astrométrie pour mesurer  les positions d’étoiles  les parallaxes  les mouvements propres lancé en 1989, observa jusqu’en 1993. Résultats : Mesure les positions de étoiles, précisions 0,001 seconde d’arc (”) Catalogue Tycho : d’étoiles à 0,005 ” Nombre d’étoiles de distances connues × 100. Précision × 10 Distance atteinte × 20. De la relation parallaxe erreur sur la distance : A 500 pc : distance connue à 50 % près Rayon de la Galaxie : 15 kpc.

24 D'Hipparcos à GAIA Gaia Satellite astrométrique Lancement en décembre 2012 pour une mission de 5 ans Orbite: à 1,5 million de km, dans la direction opposée Soleil (point de Lagrange L2). Précision attendue : 10 mas à V = 15 (mas milli arc seconde) Observations plus d'un milliard d'étoiles dans toute la Galaxie, et au-delà. jusqu'à la magnitude 20-21 220 millions jusqu’à pc photométrie en 15 couleurs vitesses radiales 1 à 10 millions de galaxies quasars à un million d'astéroïdes ~ exo-planètes

25 BONUS : Rayons des étoiles
Les étoiles rayonnent comme des corps noirs : T : Température effective. Pour deux étoiles : M = log T – 5 log R + Cte y = a x b Echelles logarithmiques Relation linéaire entre M et log T pour un rayon R constant. Relation linéaire entre M et log R pour une température constante. Echelle des rayons de 1 à 106

26 BONUS 2 : Relation Masse - Luminosité
Relation empirique construite à partir des premières mesures des étoiles ! la luminosité, donc la distance ! les masses par l’observation d’étoiles doubles Ajustement approximatif relation non anodine : doubler la masse = fois plus d’énergie rayonnée. Base théorique : le débit d’énergie fonction de la masse de l’étoile conditionne le taux de réactions nucléaires en son centre. Cette relation sert à vérifier des modèles théoriques d’étoiles


Télécharger ppt "Mesure des distance 1 : à l’intérieur d’une galaxie"

Présentations similaires


Annonces Google