La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

There are notes here for all of the slides

Présentations similaires


Présentation au sujet: "There are notes here for all of the slides"— Transcription de la présentation:

1 Unité 14. Matériaux pour la production d’énergie à faible empreinte carbone
There are notes here for all of the slides The 23 Lecture Units For 2011 Topic Number Name Finding and Displaying Information Unit 1 The materials and processes universe: families, classes, members, attributes Unit 2 Materials charts: mapping the materials universe Material Properties Unit 3 The Elements: Property origins, trends and relationships Unit 4 Manipulating Properties: Chemistry, Microstructure, Architecture Unit 5 Designing New Materials: Filling the boundaries of materials property space Selection Unit 6 Translation, Screening, Documentation: the first step in optimized selection Unit 7 Ranking: refining the choice Unit 8 Objectives in conflict: trade-off methods and penalty functions Unit 9 Material and shape Unit 10 Selecting processes: shaping, joining and surface treatment Unit 11 The economics: cost modelling for selection Sustainability Unit 12 Eco Selection: the eco audit tool Unit 13 Advanced Eco design: systematic material selection Unit 14 Low Carbon Power: Resource Intensities and Materials Use Special Topics Unit 15 Architecture and the Built Environment: materials for construction Unit 16 Structural sections: shape in action Unit 17 CES EduPack Bio Edition: Natural and man-made implantable materials Unit 18 Materials in Industrial design: Why do consumers buy products? Advanced Teaching and Research Unit 19 Advanced Databases: Level 3 Standard, Aerospace and Polymer Unit 20 Hybrid Synthesizer: Modelling Composites, Cellular structures and Sandwich panels Unit 21 Database creation: Using CES Constructor in Research Unit 22 Research: CES Selector and Constructor Unit 23 Campus: Overview of this commercial polymers database

2 Production d’énergie à faible empreinte carbone
Nucléaire Hydro Vent Solaire PV Géothermie Marée Vague Biomasse Qu’est ce que c’est? Energie (électrique) provenant de sources non hydrocarbures Energie provenant d’hydrocarbures avec capture de carbone Pourquoi est-ce intéressant? Emissions Dépendance aux importations de pétrole, gaz, charbon Les hydrocarbures sont une ressource épuisable Low carbon power If you want to make and use materials the first prerequisite is energy. The global consumption of primary energy today is approaching 500 exajoules (EJ)* derived principally from the burning of gas, oil and coal. This reliance on fossil fuels will have to diminish in coming years to meet three emerging pressures: To adjust to diminishing reserves of oil and gas. To halt the flow of carbon dioxide and other greenhouse gases into the atmosphere. To reduce dependence on foreign imports of energy and the tensions these create. The world-wide energy demand is expected to treble by The bulk of this energy will be electrical. How will it be generated when oil and gas reserves become depleted? And how much time will the transition take? The options are listed in on the right of this frame. *1 MJ = 0.28 kW.hr = 948 Btu. 1 quadrillion (1015) Btu is called a “Quad”, symbol Q. Thus 1 EJ =~ 1 Q. Où peut on la trouver?

3 Est-ce vraiment à faible émission?
Nucléaire Hydro Vent Solaire PV Géothermie Marée Vague Biomasse Sources of low-carbon power The sources are listed on the left. The carbon dioxide released during construction and operation of each system, pro-rated per kW.hr of delivered power, is plotted on the right, where it is compared with that of electrical power from fossil fuels. The way the figure is constructed is explained in the White Paper “Materials for low-carbon power” which you can down-load from the CES Help file / White papers.

4 Quelle est l’utilisation actuelle?
Exemple: France 80% nucléaire 10% énergie fossile 10% énergie renouvelable The current world electric power-generating capacity is 2,200 GW. At present about 66% of this derives from fossil fuels, about 16% from hydro-power, 15% from nuclear and 3% from other renewable sources (IEA 2008). Electric power appears to be the future for almost everything except air and space transport. Before examining individual systems for generating it, we should look at the electric energy-mix to which individual nations have committed themselves. The fossil / nuclear / renewable triangle shown in this frame shows that this is diverse. The green arrows indicate the way changes of the mix reduce carbon emission or reduce dependence on fuels, fossil or nuclear. In one way this is a reassuring picture. We are not all stuck in one corner. Nations particularly endowed with natural energy sources (Norway, Brazil, Canada, Iceland) have developed cost-efficient ways of using them. The high commitment to nuclear power in France demonstrates that it is a viable option. Most of the nations in the bottom-left corner have renewable or nuclear options, but few have large untapped hydro or geothermal resources, and even fewer have the confidence in nuclear technology on which France has built its energy-generating base.

5 Le scénario = X Besoin en énergie en 2050:
Aujourd’hui: 2,200 GW électrique Augmentation de population x Augmentation PIB = 3 fois les besoins d’aujourd’hui Tout bâti dans les 40 prochaines années Global population Global GDP X = Global resource demand Rising global population, and the rising GDP and spending power per capita multiply to create steeply rising global resource demand, and with it, demand for electrical power. To explore the impact of this on materials, we explore the hypothetical scenario requirement that 2,000 GW of low carbon power is to be constructed globally in the next 10 years, comparing the demand that would place on supply of a given material with the current global production of that material. If the demand is just a small fraction of current production, we don’t anticipate problems. But if it exceeds current production, the supply chain will be under stress. Créer 2,000 GW d’énergie à faible émission en 10 ans Quels sont les obstacles? Quelles sont les implications d’un point de vue matériaux?

6 La vue d’ensemble (1) : superficie et matériaux
Concepts Consommation en ressources Facteur de capacité Puissance Nominale kW nom versus Puissance Réelle kW actual Low carbon power systems require resources of space, materials, construction energy and capital. We define “resource intensity” as the quantity of each resource per kW of nominal, power generating capacity, “nominal” meaning the power rating of the system. The actual power generated by the system is less than the nominal rating because the capacity factor – the fraction of time that the system operates at full power – is low. Thus for nuclear power the capacity factor is typically 50%. That for hydro power is about 55%, for off-shore wind about 35%, for land-based wind about 25% and for photo-voltaic solar power, about 10%. This frame shows the material and area intensities. For a meaningful comparison the nominal power will not do; instead we need the intensities associated with the actual power output averaged over a year. To calculate these we divide each nominal intensity by the capacity factor expressed as a fraction to give “actual” material and area intensities, plotted here. The most striking thing about the chart is enormous differences between the area intensities of different systems. Gas and coal-fired power stations, nuclear and geothermal have small footprints of around 3 m2/kWactual. All others require an area 50 to 500 times greater. For offshore wind and wave power this may not be a problem, but for land-based systems the loss of land that could be used for other purposes may present difficulties. Conventional, nuclear and geothermal systems also have lower material intensities than many of the others, but to understand the material implications of alternative power systems we must examine their bills of materials in more depth.

7 La vue d’ensemble (2) : énergie et capital
Concepts Système à faible densité énergétique Ressource hautement sollicitée This frame shows the capital and energy intensities for the construction of the power systems. They are calculated, as with material and area, by dividing the nominal intensities by the capacity factor. The two actual intensities are approximately proportional. This arises partly because systems that are energy-intensive to construct are (inevitably) more expensive than those that are not, and partly because the actual power delivered by those with low capacity factors (like solar photovoltaics) is much less than the nominal rating of the system, inflating both intensities.

8 Quels sont les matériaux demandés pour la production d’énergie à faible émission de carbone?
We now return to the materials demands that will be created if low-carbon power systems are deployed on a large scale. These five schematics are part of a larger set illustrating the principal features of low-carbon power systems and the structural materials of which they are made. They can be found on the White Paper on Materials for Low Carbon Power Systems, accessed as a pdf via the Help menu of CES EduPack. The same White Paper contains approximate bills of materials for each system.

9 Quelle quantité de matériaux?
Materials: nuclear power Intensity (kg/kWnom) Aluminum Boron 0.01 Brass/bronze 0.04 Cadmium Carbon steel Chromium* Concrete Copper* Inconel Indium* Lead Manganese* Nickel* PVC Silver* Stainless steel Uranium* Zirconium* 0.2 – 0.4 Total mass, all materials Matérials : PV power Intensity (kg/kWnom) Aluminum 62.32 Antimony (dopant) 0.10 Copper* 0.8 EVA 41.33 Gallium* (dopant) 0.50 Galvanized mild steel 40.67 Indium* 0.08 Lead tin solder Silane (amorphous silicon) 0.49 Silver* Stainless steel 18.70 Tellurium* (dopant) Ytterbium* (dopant) Total mass, all materials 165 These are examples of bills of materials, listing materials intensities, for PV power on the left, and for nuclear power on the right. The White Paper on Materials for Low Carbon Power Systems contains more of these. Notes Utilisation de matériaux (kg) en fonction de la puissance nominale par kW * : Matériaux stratégiques

10 Matériaux stratégiques et production mondiale
Quels sont les matériaux stratégiques ? Matériaux ordinaires qui remplissent les fonctions essentielles (ex: Cu, Mn, Cr) (Ils peuvent généralement être recyclés) Matériaux rares ou très localisés qui permettent le développement et la mise en application des nouvelles technologies (ex: Nd, In, Pt) (Ils sont généralement difficiles à recycler) One concern that emerges is the demands made on materials deemed to be strategic, either because the global supply is limited or because the main ore-bodies are localised in such a way that a free market does not operate. This frame shows the 2008 world production of twenty nine elements that are considered to be strategic. Later sections compare the demand of each power system for these elements with the world production, highlighting where material constraints are likely. To do this we examine a hypothetical scenario: that 2,000 GW, roughly equal to the current world generating capacity or one third of that projected for 2050, were to be replaced by a given alternative power system over a period of 10 years. From this we calculate the fraction of current world production of each strategic material that would be required to make the replacement, revealing where material supply might be a problem.

11 Manque en matériaux stratégiques
Scenario: 2,000 GW de puissance avec une source donnée de production d’énergie à faible émission de carbone d’ici 2020 Demande en ressources : solaire PV Demande en ressources : Éolien These bar-charts show the material pinch-points: the anticipated demand for some of the critical materials that would be created if a given low-carbon power system was deployed on a very large scale. The bars show the demand for the material in units of the global production of that material in 2008.

12 5 ressources “Sustainable Energy – without the hot air
UIT press, Cambridge 2009 “Materials and the Environment”, Butterworth Heinemann, 2009 “Low-carbon Power Edition” CES EduPack 2011 “Materials and low-carbon power” Granta White Paper, 2011 Cuttings from world press and on-line resources Carbon market in disarray China secures mineral rights Spanish group to build Britain’s wind power Lack of wind raises fears for green energy CO2 emission decline Volkswagen reveals 313 mpg hybrid US digs deep for rare earth supply Taking the topic further. Classes on Materials for Low Carbon Power Systems can be taken further using the resources shown here. MacKay’s book “Sustainable energy” explores the physics of sustainable energy, particularly low-carbon power systems, exploring viability. “Materials and the Environment” introduces ideas of material criticality and sustainability. “Materials for low-carbon power” explores the area, energy, capital and material intensity (the demand for each, per kW of rated power output), and provides approximate bills of materials for each system. “Low Carbon Power Edition” of CES EduPack gives data on renewable energy systems, coal, gas and nuclear power systems and allows you to explore resource intensities graphically. Materials used in the systems are linked to. The Cuttings-file, (cuttings taken from the contemporary press), is an expanding file into which students are encouraged to add relevant articles from newspapers, the web or other sources. Its function is to highlight social and political concerns about low-carbon power systems, examples of material resource scarcity and what nations are doing about it, and attempts to reduce dependence on fossil fuels in other ways (extreme light-weighting of vehicles is an example).

13 Fiche type pour un système de production d’énergie à faible empreinte carbone
Hydropower – earth dam Introduction More energy is generated by hydropower than by any other renewable energy source. It supplies nearly all of the electricity for thirteen countries, among them, Norway and Brazil. The technology is simple, the power is always available (provided it rains), and dams built without hydroelectric capacity can be retro-fitted with turbines and generators. Lifetimes can exceed 100 years, and the technology is mature, making it a safe investment. Description The water wheel provided power for irrigation and milling until the Industrial Revolution triggered its replacement by steam. Today, small water turbines produce electricity for local consumption. Diagram of a hydroelectric dam Hydroelectric power plant and part of earth dam, New Zealand. Photo by Andrew Cooper Large dams create reservoirs for water in sufficient quantities and at a sufficient height to enable power for cities. Hydro plants both store energy and generate power, either continuously or intermittently to deal with spikes in demand. The energy to fill reservoirs comes from the sun, but it is gravity that drives the water through the turbine. Its power is P = nghQ where h is the drop in meters, Q the volumetric flow rate in m^3/s, g the gravitational constant and n the efficiency of the system (over 90% for large hydro and roughly 50% for small). The capital cost of a hydro plant can be high, and its construction may damage natural and human habitat. But its lifetime is long, it requires little maintenance, it creates no emissions and its fuel is free. It is a long-term investment. Resource intensity Capital intensity (construction) 4.5e e USD/kW Area intensity m^2/kW Material intensity e kg/kW Energy intensity (construction) 7.26e e4 MJ/kW CO2 intensity (construction) e3 kg/kW Operational parameters Capacity factor % System efficiency % Lifetime yrs Current installed capacity GW Growth rate %/year Delivered cost USD/kWh A typical record in the Low Carbon Power Edition. Each record has a link to the materials used in the system and the material records contain information on the price of the materials. Further details about specialist databases and CES EduPack 2011 Editions are available at: Links MaterialsUniverse References Liens vers les fiches des matériaux utilisés dans ce système de production d’énergie

14 Permet les discussions suivantes
La physique de chaque système (MacKay) Les matériaux de chaque système (Livres Blancs & CES EduPack) Économiques : coût des matériaux (Livre M & E & CES EduPack) Société : objections, jugements non fondés (Livre M & E) Politiques : Législation domestique et incitations (Presse Nationale) Politique internationale: motivation politique et restriction d’approvisionnement (Presse Nationale) Perturbation d’approvisionnement (Presse Nationale, Livre M & E) The resources on listed on the previous frame allow the widening of the discussion to include the broader topics shown in this frame.

15 En résumé... Il apparaît inévitablement que, dans le futur, une transition vers les énergies à faible empreinte carbone est nécessaire. De tels systèmes libèrent considérablement moins d’émissions dans l’atmosphère par kWh, mais alourdissent la demande en espace, énergie de construction, investissement et matériaux. Leur déploiement à grande échelle entraînera une pression sur les chaînes d’approvisionnement de certains matériaux critiques. Anticiper cette demande est essentiel pour la planification de la future demande énergétique. So what? This final frame summarised the points made in this Unit.

16 Sommaire des leçons disponibles
Le diaporama de cette leçon est disponible sur le site web des Ressources d’enseignement C’est dans ce cadre que se trouvent les notes explicatives. Chaque diapo d’une leçon comporte des notes explicatives. Vous pouvez les consulter en ouvrant le diaporama en mode [“Normal”], ou en cliquant sur l’icône correspondante dans la barre d’outils inférieure. 16

17 Il y a plus de 200 ressources disponibles Incluant :
Auteur Il y a plus de 200 ressources disponibles Incluant : 77 diaporamas des Exercices avec leur solution des séquences enregistrées sur le web. des Posters des Rapports d’analyse des Manuels de Solutions des études de cas interactifs Mike Ashby University of Cambridge, Granta Design Ltd. Reproduction Ces ressources sont soumises aux droits d'auteur de Mike Ashby. Vous pouvez reproduire ces ressources pour les utiliser avec des étudiants, pourvu que vous ayez acheté les droits d'accès aux ressources d'Enseignement de Granta Design. Assurez-vous, s'il vous plaît, que Mike Ashby et Granta Design sont cités sur toutes vos reproductions. Vous ne pouvez utiliser ces ressources pour des buts commerciaux. Précision / Pertinence Nous faisons tout pour que ces ressources soient d'une grande qualité. Si vous avez des suggestions pour des améliorations, contactez-nous s'il vous plaît par courrier électronique à : Granta Design est toujours interessé par les retours d’information sur les bons résultats obtenus avec diverses ressources. Si vous employez avec succès des cours que vous pensez utiles à proposer sur notre site web, s’il vous plait, prenez contact par mail à l’adresse : Nous continuons de coordonner un symposium annuel sur les matériaux. Vous pouvez consulter les documents correspondants à l’adresse : © M. F. Ashby, 2012 Le site Web "Ressources d'Enseignement" vise à aider l'enseignement des matériaux, et les cours correspondants en Conception, Ingénierie et Science. Les ressources sont fournies dans des formats divers et sont destinées principalement à la formation des étudiants. Ce cours fait partie d'un ensemble créé par Mike Ashby pour aider à présenter aux étudiants, les matériaux, les procédés et une sélection rationnelle. Le site Web contient aussi d'autres ressources apportées par plus de 800 universités et lycées du monde entier, employant CES EduPack de Granta Design. Ce site Web contient deux catégories de ressources, qui, soit exigent l'emploi de CES EduPack, soit ne l'exigent pas.


Télécharger ppt "There are notes here for all of the slides"

Présentations similaires


Annonces Google