Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
1
L'atome quantique préambule
2
En mécanique quantique, l'électron n'est plus décrit par les
vecteurs position et vitesse. Il est décrit par une fonction d'onde, notée E est l ’énergie associée à la fonction d’onde
3
En mécanique quantique, l'électron n'est plus décrit par les
vecteurs position et vitesse. Il est décrit par une fonction d'onde, notée E est l ’énergie associée à la fonction d’onde
4
En mécanique quantique, l'électron n'est plus décrit par les
vecteurs position et vitesse. Il est décrit par une fonction d'onde, notée H est l’hamiltonien, opérateur mathématique qui est caractéristique de l’électron (quantité de mouvement, énergie potentielle) E est l ’énergie associée à la fonction d’onde
5
En mécanique quantique, l'électron n'est plus décrit par les
vecteurs position et vitesse. Il est décrit par une fonction d'onde, notée H est l’hamiltonien, opérateur mathématique qui est caractéristique de l’électron (quantité de mouvement, énergie potentielle) E est l ’énergie associée à la fonction d’onde
8
La mécanique quantique n’est pas déterministe
On ne peut estimer qu’une certaine probabilité de rencontrer l’électron dans une certaine région de l’espace.
11
dt = petit élément de volume
d = r2.sin.dr.d.d
12
dt = petit élément de volume
d = r2.sin.dr.d.d
13
La mécanique quantique n’est pas déterministe
On ne peut estimer qu’une certaine probabilité de rencontrer l’électron dans une certaine région de l’espace. ||2 représente la densité de probabilité de présence de l'électron La probabilité dP de trouver l'électron dans un volume infinitésimal d centré autour d'un point M0 de coordonnées (x0, y0, z0) vaut dP = ||2.d
14
La mécanique quantique n’est pas déterministe
On ne peut estimer qu’une certaine probabilité de rencontrer l’électron dans une certaine région de l’espace. ||2 représente la densité de probabilité de présence de l'électron La probabilité dP de trouver l'électron dans un volume infinitésimal d centré autour d'un point M0 de coordonnées (x0, y0, z0) vaut dP = ||2.d
15
dP = ||2.d dt = petit élément de volume d = r2.sin.dr.d.d
16
La mécanique quantique n’est pas déterministe
On ne peut estimer qu’une certaine probabilité de rencontrer l’électron dans une certaine région de l’espace. ||2 représente la densité de probabilité de présence de l'électron La probabilité dP de trouver l'électron dans un volume infinitésimal d centré autour d'un point M0 de coordonnées (x0, y0, z0) vaut dP = ||2.d
17
L'atome quantique
18
L’atome d’hydrogène en mécanique quantique
Symétrie sphérique On écrit la fonction d’onde sous lal forme
19
L’atome d’hydrogène en mécanique quantique
On montre que (r,,) s’écrit sous la forme
20
L’atome d’hydrogène en mécanique quantique
On montre que (r,,) s’écrit sous la forme R(r ) : fonction de la distance à l’origine = distance de l’électron au noyau
21
L’atome d’hydrogène en mécanique quantique
On montre que (r,,) s’écrit sous la forme R(r ) : fonction de la distance à l’origine = distance de l’électron au noyau Y(,) : fonction de la direction dans laquelle on regarde
22
L’atome d’hydrogène en mécanique quantique
On montre que (r,,) s’écrit sous la forme R(r ) : fonction de la distance à l’origine = distance de l’électron au noyau Y(,) : fonction de la direction dans laquelle on regarde On montre que (r,,) dépend de 3 paramètres, ou encore nombres quantiques : n, l, m
23
L’atome d’hydrogène en mécanique quantique
On montre aussi que :
24
L’atome d’hydrogène en mécanique quantique
On montre aussi que : La condition impose que :
25
L’atome d’hydrogène en mécanique quantique
On montre aussi que : La condition impose que :
26
L’atome d’hydrogène en mécanique quantique
On montre aussi que : La condition impose que : donc
27
L’atome d’hydrogène en mécanique quantique
On montre aussi que : La condition impose que : donc
28
L’atome d’hydrogène en mécanique quantique
On montre aussi que : La condition impose que : donc Soit encore :
29
L’atome d’hydrogène en mécanique quantique
Les nombres quantiques n, l, m (ou ml) : n : entier naturel non nul (nombre quantique principal) l : entier naturel : 0 ≤ l ≤ n-1 (nombre quantique secondaire) m : entier relatif : - l ≤ m ≤ + l (nombre quantique magnétique)
30
L’atome d’hydrogène en mécanique quantique
Les nombres quantiques n, l, m (ou ml) : n : entier naturel non nul (nombre quantique principal) l : entier naturel : 0 ≤ l ≤ n-1 (nombre quantique secondaire) m : entier relatif : - l ≤ m ≤ + l (nombre quantique magnétique) Rappel :
31
L’atome d’hydrogène en mécanique quantique
Les nombres quantiques n, l, m (ou ml) : n : entier naturel non nul (nombre quantique principal) l : entier naturel : 0 ≤ l ≤ n-1 (nombre quantique secondaire) m : entier relatif : - l ≤ m ≤ + l (nombre quantique magnétique) Rappel : Pour les atomes polyélectroniques, on a vu que l’énergie dépendait de n et l.
32
Les orbitales atomiques
Les orbitales atomiques sont les solutions de l'équation de Schrödinger
33
Les orbitales atomiques
Les orbitales atomiques sont les solutions de l'équation de Schrödinger Les orbitales atomiques (OA) dépendent de trois variables il est impossible de les représenter en deux dimensions nécessité d'effectuer des représentations en coupe
34
Les orbitales atomiques
Les orbitales atomiques sont les solutions de l'équation de Schrödinger Les orbitales atomiques (OA) dépendent de trois variables il est impossible de les représenter en deux dimensions nécessité d'effectuer des représentations en coupe
35
Les orbitales atomiques
Les orbitales atomiques sont les solutions de l'équation de Schrödinger Les orbitales atomiques (OA) dépendent de trois variables il est impossible de les représenter en deux dimensions nécessité d'effectuer des représentations en coupe 2p-1, 2p0 et 2p+1 sont des fonctions complexes Par combinaisons linéaires, on obtient trois OA réelles : {2px , 2py , 2pz}
36
Les orbitales atomiques
Les orbitales atomiques sont les solutions de l'équation de Schrödinger Les orbitales atomiques (OA) dépendent de trois variables il est impossible de les représenter en deux dimensions nécessité d'effectuer des représentations en coupe Les 5 orbitales de type d (n ≥ 3 ; l = 2 ; m = -2, -1, 0, +1, +2) subissent le même traitement, et sont notées sous les labels dz2, dx2-y2, dxy, dyz et dxz
37
Expressions des orbitales (n = 1 et 2)
38
Etude de la partie radiale
Notion de densité de probabilité radiale
39
Etude de la partie radiale
Notion de densité de probabilité radiale
40
Etude de la partie radiale
Notion de densité de probabilité radiale ||2 : densité de probabilité de présence de l'électron
41
Etude de la partie radiale
Notion de densité de probabilité radiale ||2 : densité de probabilité de présence de l'électron densité de probabilité de présence radiale de l'électron
42
Etude de la partie radiale
Notion de densité de probabilité radiale ||2 : densité de probabilité de présence de l'électron densité de probabilité de présence radiale de l'électron dP = ||2.d
43
Etude de la partie radiale
Notion de densité de probabilité radiale ||2 : densité de probabilité de présence de l'électron densité de probabilité de présence radiale de l'électron dP = ||2.d
44
Etude de la partie radiale
est la probabilité de présence de l’électron entre la sphère de rayon r et r + dr r + dr
45
Etude de la partie radiale
Notion de densité de probabilité radiale ||2 : densité de probabilité de présence de l'électron densité de probabilité de présence radiale de l'électron dP = ||2.d densité de probabilité de présence de l'électron
46
Etude de la partie radiale
Notion de densité de probabilité radiale ||2 : densité de probabilité de présence de l'électron densité de probabilité de présence radiale de l'électron dP = ||2.d densité de probabilité de présence radiale de l'électron densité de probabilité de présence de l'électron
47
Densités de probabilité radiale
48
Densités de probabilité radiale
49
Densités de probabilité radiale
50
Etude de la partie radiale
Maximum pour la densité de probabilité radiale ◊ n = 1 : r = a0 ◊ n = 2 : r ≈ 5 a0 ◊ n = 3 : r ≈ 11 a0
51
Etude de la partie radiale
Maximum pour la densité de probabilité radiale ◊ n = 1 : r = a0 ◊ n = 2 : r ≈ 5 a0 ◊ n = 3 : r ≈ 11 a0 Définition : le rayon d'une fonction propre est le rayon de maximum de densité de probabilité de présence radiale
52
Etude de la partie radiale
Maximum pour la densité de probabilité radiale ◊ n = 1 : r = a0 ◊ n = 2 : r ≈ 5 a0 ◊ n = 3 : r ≈ 11 a0 Définition : le rayon d'une fonction propre est le rayon de maximum de densité de probabilité de présence radiale Le rayon d'une fonction propre ◊ croît avec n ◊ dépend peu de l Plus les électrons sont sur une couche élevée, plus ils sont loins du noyau
53
Etude de la partie angulaie
La partie radiale R(r) de la fonction propre permettait de visualiser "l'extension" du nuage électronique. La partie angulaire permet de donner une idée des directions priviligiées pour la densité électronique • Yl, m ne dépend pas de n résultats trouvés valables pour tout n. • Yl, m = Yl, m ( ,) nécessité de tracer des fonction en coupe.
54
Partie angulaire d’une orbitale s
55
Partie angulaire d’une orbitale s
56
Partie angulaire d’une orbitale s
57
Partie angulaire d’une orbitale pz
58
Partie angulaire d’une orbitale pz
59
Partie angulaire d’une orbitale pz
60
Partie angulaire d’une orbitale pz
61
Partie angulaire d’une orbitale py
62
Partie angulaire d’une orbitale py
63
Partie angulaire d’une orbitale py
64
Partie angulaire d’une orbitale py
65
Les courbes d’isodensité électronique
Idée : avoir accès à l’allure de la densité électronique associée à chaque fonction d’onde
66
Les courbes d’isodensité électronique
Idée : avoir accès à l’allure de la densité électronique associée à chaque fonction d’onde densité de probabilité de présence de l'électron
67
Les courbes d’isodensité électronique
Idée : avoir accès à l’allure de la densité électronique associée à chaque fonction d’onde densité de probabilité de présence de l'électron Définition : Les courbes d'isodensité électronique sont des surfaces pour lesquelles ||2 = k
68
Courbes d’isodensité électronique d’une orbitale pz
(Tracé sur MAPLE)
69
Les courbes d’isodensité électronique
70
Les courbes d’isodensité électronique
C'est la représentation des courbes d'isodensité qui donne la meilleure idée de l'extension spatiale de la densité électronique pour chaque orbitale
71
Représentation d’une orbitale
72
Représentation d’une orbitale
73
Représentation d’une orbitale s
74
Partie angulaire d’une orbitale de type s (Tracé sur MAPLE)
Représentation d’une orbitale s z y x Partie angulaire d’une orbitale de type s (Tracé sur MAPLE)
75
Représentation des orbitales p
76
Partie angulaire d’une orbitale de type pz (Tracé sur MAPLE)
Représentation des orbitales p z y x Partie angulaire d’une orbitale de type pz (Tracé sur MAPLE)
77
Représentation des orbitales d
78
Partie angulaire d’une orbitale de type dxy (Tracé sur MAPLE)
Représentation des orbitales d z y x Partie angulaire d’une orbitale de type dxy (Tracé sur MAPLE)
79
Représentation des orbitales d
80
Représentation des orbitales d
81
Partie angulaire d’une orbitale de type dx 2-y 2 (Tracé sur MAPLE)
Représentation des orbitales d z y x Partie angulaire d’une orbitale de type dx 2-y 2 (Tracé sur MAPLE)
82
Représentation des orbitales d
83
Partie angulaire d’une orbitale de type dz 2 (Tracé sur MAPLE)
Représentation des orbitales d z y x Partie angulaire d’une orbitale de type dz 2 (Tracé sur MAPLE)
84
Représentation des orbitales d
85
Hydrogénoïdes : ions avec un seul électron : He+, Li2+, Be3+, etc …
Cas des hydrogénoïdes Hydrogénoïdes : ions avec un seul électron : He+, Li2+, Be3+, etc … ( He : Z=2 Li : Z = 3 Be : Z = 4 etc … ) • Les énergies ont la forme • On trouve les fonctions propres en reprenant celles de l'atome d'hydrogène et en remplaçant a0 par hydrogène hydrogénoïde
86
Hydrogénoïdes : ions avec un seul électron : He+, Li2+, Be3+, etc …
Cas des hydrogénoïdes Hydrogénoïdes : ions avec un seul électron : He+, Li2+, Be3+, etc … ( He : Z=2 Li : Z = 3 Be : Z = 4 etc … ) • Les énergies ont la forme • On trouve les fonctions propres en reprenant celles de l'atome d'hydrogène et en remplaçant a0 par hydrogène hydrogénoïde
87
Hydrogénoïdes : ions avec un seul électron : He+, Li2+, Be3+, etc …
Cas des hydrogénoïdes Hydrogénoïdes : ions avec un seul électron : He+, Li2+, Be3+, etc … ( He : Z=2 Li : Z = 3 Be : Z = 4 etc … ) • Les énergies ont la forme • On trouve les fonctions propres en reprenant celles de l'atome d'hydrogène et en remplaçant a0 par hydrogène hydrogénoïde
88
Hydrogénoïdes : ions avec un seul électron : He+, Li2+, Be3+, etc …
Cas des hydrogénoïdes Hydrogénoïdes : ions avec un seul électron : He+, Li2+, Be3+, etc … ( He : Z=2 Li : Z = 3 Be : Z = 4 etc … ) • Les énergies ont la forme • On trouve les fonctions propres en reprenant celles de l'atome d'hydrogène et en remplaçant a0 par hydrogène hydrogénoïde
89
L’atome polyélectronique
Le traitement de l'atome à Z électrons est beaucoup plus difficile que celui de l'atome d'hydrogène La résolution exacte de l'équation de Schrödinger est impossible On peut mathématiquement s’approcher d’aussi près que l’on veut de la solution exacte (convergence de l’énergie) Idée : au lieu de chercher une solution approchée du système exact, on préfère chercher une solution exacte du système approché. On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques. Ces solutions sont appelées orbitales atomiques (OA), et notées .
90
L’atome polyélectronique
Le traitement de l'atome à Z électrons est beaucoup plus difficile que celui de l'atome d'hydrogène La résolution exacte de l'équation de Schrödinger est impossible On peut mathématiquement s’approcher d’aussi près que l’on veut de la solution exacte (convergence de l’énergie) Idée : au lieu de chercher une solution approchée du système exact, on préfère chercher une solution exacte du système approché. On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques. Ces solutions sont appelées orbitales atomiques (OA), et notées .
91
L’atome polyélectronique
Le traitement de l'atome à Z électrons est beaucoup plus difficile que celui de l'atome d'hydrogène La résolution exacte de l'équation de Schrödinger est impossible On peut mathématiquement s’approcher d’aussi près que l’on veut de la solution exacte (convergence de l’énergie) Idée : au lieu de chercher une solution approchée du système exact, on préfère chercher une solution exacte du système approché. On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques. Ces solutions sont appelées orbitales atomiques (OA), et notées .
92
L’atome polyélectronique
Le traitement de l'atome à Z électrons est beaucoup plus difficile que celui de l'atome d'hydrogène La résolution exacte de l'équation de Schrödinger est impossible On peut mathématiquement s’approcher d’aussi près que l’on veut de la solution exacte (convergence de l’énergie) Idée : au lieu de chercher une solution approchée du système exact, on préfère chercher une solution exacte du système approché. On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques. Ces solutions sont appelées orbitales atomiques (OA), et notées .
93
L’atome polyélectronique
Le traitement de l'atome à Z électrons est beaucoup plus difficile que celui de l'atome d'hydrogène La résolution exacte de l'équation de Schrödinger est impossible On peut mathématiquement s’approcher d’aussi près que l’on veut de la solution exacte (convergence de l’énergie) Idée : au lieu de chercher une solution approchée du système exact, on préfère chercher une solution exacte du système approché. On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques). Ces solutions sont appelées orbitales atomiques (OA), et notées .
94
n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l
L’atome polyélectronique On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques). Ces solutions sont appelées orbitales atomiques (OA), et notées . • Elles ne sont pas fonctions propres de l'hamiltonien exact. • Ce sont de bons points de départ pour des calculs plus complets. • Leur comportement est très proche des vraies solutions. Chaque orbitale atomique est écrite sous la forme : n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l n entier positif l entier tel que 0 ≤ l ≤ n-1 m entier relatif tel que -l ≤ m ≤ +l
95
n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l
L’atome polyélectronique On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques. Ces solutions sont appelées orbitales atomiques (OA), et notées . • Elles ne sont pas fonctions propres de l'hamiltonien exact. • Ce sont de bons points de départ pour des calculs plus complets. • Leur comportement est très proche des vraies solutions. Chaque orbitale atomique est écrite sous la forme : n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l n entier positif l entier tel que 0 ≤ l ≤ n-1 m entier relatif tel que -l ≤ m ≤ +l
96
n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l
L’atome polyélectronique On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques. Ces solutions sont appelées orbitales atomiques (OA), et notées . • Elles ne sont pas fonctions propres de l'hamiltonien exact. • Ce sont de bons points de départ pour des calculs plus complets. • Leur comportement est très proche des vraies solutions. Chaque orbitale atomique est écrite sous la forme : n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l n entier positif l entier tel que 0 ≤ l ≤ n-1 m entier relatif tel que -l ≤ m ≤ +l
97
n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l
L’atome polyélectronique On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques. Ces solutions sont appelées orbitales atomiques (OA), et notées . • Elles ne sont pas fonctions propres de l'hamiltonien exact. • Ce sont de bons points de départ pour des calculs plus complets. • Leur comportement est très proche des vraies solutions. Chaque orbitale atomique est écrite sous la forme : n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l n entier positif l entier tel que 0 ≤ l ≤ n-1 m entier relatif tel que -l ≤ m ≤ +l
98
n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l
L’atome polyélectronique On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques. Ces solutions sont appelées orbitales atomiques (OA), et notées . • Elles ne sont pas fonctions propres de l'hamiltonien exact. • Ce sont de bons points de départ pour des calculs plus complets. • Leur comportement est très proche des vraies solutions. Chaque orbitale atomique est écrite sous la forme : n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l n entier positif l entier tel que 0 ≤ l ≤ n-1 m entier relatif tel que -l ≤ m ≤ +l
99
n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l
L’atome polyélectronique On définit des hamiltoniens monoélectroniques « moyens ». On en cherche les solutions (c’est possible, car les hamiltoniens sont monoélectroniques. Ces solutions sont appelées orbitales atomiques (OA), et notées . • Elles ne sont pas fonctions propres de l'hamiltonien exact. • Ce sont de bons points de départ pour des calculs plus complets. • Leur comportement est très proche des vraies solutions. Chaque orbitale atomique est écrite sous la forme : n,l,m(r,,) = Rn,l( r). Yl,m(,) En,l n entier positif l entier tel que 0 ≤ l ≤ n-1 m entier relatif tel que -l ≤ m ≤ +l
100
Le modèle de Slater But : Avec un modèle simple, et à partir de la configuration électronique fondamentale, calculer des grandeurs atomiques (énergie, rayon d’orbitales, etc …) Idée : plus l’électron est sur une couche élevée, plus le maximum de densité électronique est loin du noyau. Donc l'attraction exercée par le noyau sur les électrons est fortement diminuée par la présence des électrons situés dans les couches inférieures. Pour un électron étudié, tout se passe comme si les électrons des couches inférieures ou égales à cet électron masquaient une partie de la charge du noyau
101
Le modèle de Slater But : Avec un modèle simple, et à partir de la configuration électronique fondamentale, calculer des grandeurs atomiques (énergie, rayon d’orbitales, etc …) Idée : plus l’électron est sur une couche élevée, plus le maximum de densité électronique est loin du noyau. Donc l'attraction exercée par le noyau sur les électrons est fortement diminuée par la présence des électrons situés dans les couches inférieures. Pour un électron étudié, tout se passe comme si les électrons des couches inférieures ou égales à cet électron masquaient une partie de la charge du noyau
102
Le modèle de Slater But : Avec un modèle simple, et à partir de la configuration électronique fondamentale, calculer des grandeurs atomiques (énergie, rayon d’orbitales, etc …) Idée : plus l’électron est sur une couche élevée, plus le maximum de densité électronique est loin du noyau. Donc l'attraction exercée par le noyau sur les électrons est fortement diminuée par la présence des électrons situés dans les couches inférieures. Pour un électron étudié, tout se passe comme si les électrons des couches inférieures ou égales à cet électron masquaient une partie de la charge du noyau
103
Le modèle de Slater But : Avec un modèle simple, et à partir de la configuration électronique fondamentale, calculer des grandeurs atomiques (énergie, rayon d’orbitales, etc …) Idée : plus l’électron est sur une couche élevée, plus le maximum de densité électronique est loin du noyau. Donc l'attraction exercée par le noyau sur les électrons est fortement diminuée par la présence des électrons situés dans les couches inférieures. Pour un électron étudié, tout se passe comme si les électrons des couches inférieures ou égales à cet électron masquaient une partie de la charge du noyau
104
e- étudié (couche n) e- (couche n’=n) e- (couche n’<n-1) e- (couche n’=n-1) Noyau Ces électrons écrantent une partie de la charge du noyau à l’électron étudié
105
e- (couche n’>n) e- étudié (couche n) Ces électrons n’écrantent pas une partie de la charge du noyau à l’électron étudié e- (couche n’=n) e- (couche n’=n-1) e- (couche n’<n-1) Noyau
106
Le modèle de Slater L’électron étudié appartient à une sous-couche (n,l) Il ne voit pas un noyau de charge Z, mais de charge effective Z*n,l. On dit que les électrons des couche inférieures ou égales à celui étudié écrantent partiellement la charge du noyau. Charge effective vue par l’électron étudié Charge du noyau Constante d’écran
107
Le modèle de Slater L’électron étudié appartient à une sous-couche (n,l) Il ne voit pas un noyau de charge Z, mais de charge effective Z*n,l. On dit que les électrons des couche inférieures ou égales à celui étudié écrantent partiellement la charge du noyau. Charge effective vue par l’électron étudié Charge du noyau Constante d’écran
108
Le modèle de Slater L’électron étudié appartient à une sous-couche (n,l) Il ne voit pas un noyau de charge Z, mais de charge effective Z*n,l. On dit que les électrons des couche inférieures ou égales à celui étudié écrantent partiellement la charge du noyau. Charge effective vue par l’électron étudié Charge du noyau Constante d’écran
109
Le modèle de Slater L’électron étudié appartient à une sous-couche (n,l) Il ne voit pas un noyau de charge Z, mais de charge effective Z*n,l. On dit que les électrons des couche inférieures ou égales à celui étudié écrantent partiellement la charge du noyau. Charge effective vue par l’électron étudié Charge du noyau Constante d’écran
110
Le modèle de Slater L’électron étudié appartient à une sous-couche (n,l) Il ne voit pas un noyau de charge Z, mais de charge effective Z*n,l. On dit que les électrons des couche inférieures ou égales à celui étudié écrantent partiellement la charge du noyau. Charge effective vue par l’électron étudié Charge du noyau Constante d’écran
111
Règles de Slater
112
Règles de Slater
113
Règles de Slater
114
Règles de Slater
115
Règles de Slater
116
Règles de Slater
117
Règles de Slater
118
Règles de Slater
119
Règles de Slater
120
Règles de Slater
121
Règles de Slater
122
Règles de Slater
123
Règles de Slater
124
Règles de Slater
125
Calcul de l’énergie électronique d’un atome
Rappel sur les hydrogénoïdes (ions avec un seul électron) : Les énergies ont la forme Dans un atome polyélectronique, la charge nucléaire ressentie par un électron i vaut Zi*. Par analogie la contribution de cet électron à l'énergie électronique totale vaut L’énergie électronique totale vaut donc :
126
Calcul de l’énergie électronique d’un atome
Rappel sur les hydrogénoïdes (ions avec un seul électron) : Les énergies ont la forme Dans un atome polyélectronique, la charge nucléaire ressentie par un électron i vaut Zi*. Par analogie la contribution de cet électron à l'énergie électronique totale vaut L’énergie électronique totale vaut donc :
127
Calcul de l’énergie électronique d’un atome
Rappel sur les hydrogénoïdes (ions avec un seul électron) : Les énergies ont la forme Dans un atome polyélectronique, la charge nucléaire ressentie par un électron i vaut Zi*. Par analogie la contribution de cet électron à l'énergie électronique totale vaut L’énergie électronique totale vaut donc :
128
Calcul de l’énergie électronique d’un atome
L’énergie électronique totale vaut donc :
129
Calcul de l’énergie électronique d’un atome
L’énergie électronique totale vaut donc :
130
Calcul de l’énergie électronique d’un atome
L’énergie électronique totale vaut donc :
131
Calcul de l’énergie électronique d’un atome
L’énergie électronique totale vaut donc : Pour améliorer la concordance avec l’expérience, en particulier pour les éléments dans les lignes inférieures de la classification, on utilise une autre formule :
132
Rayon d’une orbitale - Rayon atomique
Une valeur approchée du rayon d'une orbitale () est donnée par : Numériquement : le rayon d'une orbitale de valence est beaucoup plus grand que celui des orbitales de cœur. Le rayon des orbitales de valence donne une estimation de la taille de l'atome : cette estimation est appelée le rayon atomique.
133
Rayon d’une orbitale - Rayon atomique
Une valeur approchée du rayon d'une orbitale () est donnée par : Numériquement : le rayon d'une orbitale de valence est beaucoup plus grand que celui des orbitales de cœur. Le rayon des orbitales de valence donne une estimation de la taille de l'atome : cette estimation est appelée le rayon atomique.
134
Evolution du rayon atomique dans la classification
: rayon atomique (pm)
135
Evolution du rayon atomique dans la classification
: rayon atomique (pm)
136
Evolution du rayon atomique dans la classification
Constatation : Pour une période donnée, diminue quand Z augmente Explication : Quand on passe d'une case à une case voisine : n reste constant * augmente (Z* = Z- , Z augmentant de 1, et de moins de 1) diminue donc si Z augmente sur une ligne
137
Evolution du rayon atomique dans la classification
Constatation : Pour une période donnée, diminue quand Z augmente Explication : Quand on passe d'une case à une case voisine : n reste constant * augmente (Z* = Z- , Z augmentant de 1, et de moins de 1) diminue donc si Z augmente sur une ligne
138
? Evolution du rayon atomique dans la classification Constatation :
Pour une période donnée, diminue quand Z augmente Explication : Quand on passe d'une case à une case voisine : n reste constant * augmente (Z* = Z- , Z augmentant de 1, et de moins de 1) ? diminue donc si Z augmente sur une ligne
139
Evolution du rayon atomique dans la classification
Constatation : Pour une période donnée, diminue quand Z augmente Explication : Quand on passe d'une case à une case voisine : n reste constant * augmente (Z* = Z- , Z augmentant de 1, et de moins de 1) diminue donc si Z augmente sur une ligne
140
augmente fortement d'une fin de ligne au début de la suivante
Evolution du rayon atomique dans la classification Constatation : augmente brusquement quand on passe de la fin d'une ligne au début de la suivante Explication : Quand on passe d'une case à une case voisine : on passe de n à n+1 Z*chute brusquement (Z* = Z- , Z augmentant de 1, augmente énormément) augmente fortement d'une fin de ligne au début de la suivante
141
augmente fortement d'une fin de ligne au début de la suivante
Evolution du rayon atomique dans la classification Constatation : augmente brusquement quand on passe de la fin d'une ligne au début de la suivante Explication : Quand on passe d'une case à une case voisine : on passe de n à n+1 Z*chute brusquement (Z* = Z- , Z augmentant de 1, augmente énormément) ? augmente fortement d'une fin de ligne au début de la suivante
142
augmente fortement d'une fin de ligne au début de la suivante
Evolution du rayon atomique dans la classification Constatation : augmente brusquement quand on passe de la fin d'une ligne au début de la suivante Explication : Quand on passe d'une case à une case voisine : on passe de n à n+1 Z*chute brusquement (Z* = Z- , Z augmentant de 1, augmente énormément) augmente fortement d'une fin de ligne au début de la suivante
143
Rayons ioniques Un cation a toujours un rayon nettement plus petit que l'atome, d’autant plus petit que la charge est élevée Explication : Perte d' électrons diminution de l'effet d'écran augmentation de l'attraction du noyau pour les autres électrons baisse du rayon Exemple :
144
Rayons ioniques Un cation a toujours un rayon nettement plus petit que l'atome, d’autant plus petit que la charge est élevée Explication : Perte d' électrons diminution de l'effet d'écran augmentation de l'attraction du noyau pour les autres électrons baisse du rayon Exemple :
145
Rayons ioniques Un cation a toujours un rayon nettement plus petit que l'atome, d’autant plus petit que la charge est élevée Explication : Perte d' électrons diminution de l'effet d'écran augmentation de l'attraction du noyau pour les autres électrons baisse du rayon Exemple (rayons en pm)
146
Rayons ioniques Un anion a toujours un rayon nettement plus grand que l'atome, d’autant plus grand que la charge est élevée Explication : Gain d' électrons augmentation de l'effet d'écran diminution de l'attraction du noyau pour les autres électrons augmentation du rayon Exemple (rayons en pm)
147
Rayons ioniques Un anion a toujours un rayon nettement plus grand que l'atome, d’autant plus grand que la charge est élevée Explication : Gain d' électrons augmentation de l'effet d'écran diminution de l'attraction du noyau pour les autres électrons augmentation du rayon Exemple (rayons en pm)
148
Rayons ioniques Un anion a toujours un rayon nettement plus grand que l'atome, d’autant plus grand que la charge est élevée Explication : Gain d' électrons augmentation de l'effet d'écran diminution de l'attraction du noyau pour les autres électrons augmentation du rayon Exemple (rayons en pm)
149
Modèle de Slater e- étudié (couche n) Noyau
150
Modèle de Slater e- étudié (couche n) e- (couche n’=n-1) Noyau
151
Modèle de Slater e- étudié (couche n) e- (couche n’=n) Noyau
152
Modèle de Slater e- étudié (couche n) e- (couche n’<n-1) Noyau
153
e- (couche n’>n) Modèle de Slater e- étudié (couche n) Noyau
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.