La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Techniques opératoires Cycles 2 et 3

Présentations similaires


Présentation au sujet: "Techniques opératoires Cycles 2 et 3"— Transcription de la présentation:

1 Techniques opératoires Cycles 2 et 3
Addition L’acquisition des mécanismes en mathématiques est toujours associée à une intelligence de leur signification. Les nombres doivent rester de taille raisonnable et aucune virtuosité technique n’est recherchée. Jean Luc Despretz – CPC Landivisiau – Avril 2010

2 Addition Dossier largement inspiré des travaux de :
Roland Charnay, formateur à l’IUFM de Lyon, co-fondateur du groupe Ermel Jean Luc Brégeon, formateur à l’IUFM d’Auvergne Dominique Pernoux, formateur à l’IUFM d’Alsace Pierre Eysseric, IUFM d'Aix-Marseille Rémi Brissiaud, IUFM de Versailles de l’étude de plusieurs manuels de l’observation des élèves (évaluations CE1 – 2007)

3 Addition Le sens de l’addition
J’utilise l’addition pour calculer le nombre d’objets d’une collection J’utilise l’addition pour calculer une somme de longueurs Le nombre total de billes est : = 48 Il y a 48 billes dans cette collection Je veux mesurer le périmètre du terrain = 158 Le périmètre de ce terrain est 158 m

4 Addition Le sens de l’addition
J’utilise l’addition pour avancer sur la file numérique Je joue au jeu de l’oie et mon pion est sur la case 18. Je dois avancer de 6 cases = 24 Mon pion sera sur la case 24 Rechercher avec les élèves des situations qui impliquent de trouver le résultat par une addition. (jeux, courses, collections, …)

5 Addition Difficultés observées
Évaluations CE : des observations de classes ont permis d’analyser et d’interroger les élèves sur les stratégies utilisées. (GRP 29) Item 1 : calcul en ligne de 3 + 5 Erreurs constatées Pas de réponse Résultat erroné : 7, 9, … Item 2 : calcul en ligne de Erreurs constatées Pas de réponse Résultat erroné : 18, … Confusion dans la valeur des chiffres (numération décimale) : 55

6 Addition Difficultés observées Item 3 : calcul en ligne de 45 + 23
Résultats corrects Le résultat 68 est donné sans explication (on ne demandait pas la procédure) = = 68 45+23 = = = 68 4+2 = = = 68 Erreurs constatées = 65 = = 47 L’écriture est transformée en (sans résultat) L’élève utilise le tableau de numération mais en confondant la valeur des chiffres d u 9 5

7 Addition Difficultés observées Item 3 : calcul en ligne de 45 + 23
Sur 20 élèves interrogés dans une classe, on obtient plusieurs types de réponses : Pour calculer - je ne sais pas faire, j’ai oublié comment faire (l’élève n’a pas à sa disposition de procédure personnelle ou il n’ose pas en utiliser) je pose l’addition dans ma tête et je calcule et après (visualisation de l’opération posée) je fais 45 = …. (procédures de décomposition) je relie 4 et 2 ça fait 6 et après 5 et 3 ça fait 8 (connaissance de la numération décimale mais en commençant par le premier chiffre) Pour trouver le résultat je compte directement dans ma tête (mémorisation de la table d’addition) je compte sur mes doigts si je ne suis pas sûr (l’élève utilise une procédure d’aide)

8 Addition Difficultés observées Item 4 : calcul posé de 57 + 14
Erreurs constatées (essentiellement la gestion de la retenue) Item 5 : pose l’opération et calcule Autres erreurs constatées - opération mal posée - sens du calcul (début par les centaines)

9 Addition Pistes de travail
▪ Revenir à des manipulations d’objets et de collections (paquets de 10, passage à la dizaine…) ▪ Procéder à des échanges sous forme de jeu et d’écriture (ex: échange de monnaie, matériel scolaire, abaques …) pour comprendre la numération décimale et le sens de la retenue ▪ Apprendre à utiliser la table d’addition pour la mémoriser ▪ User quotidiennement en classe d’exercices variés en calcul mental (calcul rapide et réfléchi) ▪ Pratiquer régulièrement des décompositions de nombres (ex: calculs en arbre) ▪ Utiliser régulièrement le tableau de numération pour placer les nombres dans un premier temps, pour calculer dans un deuxième temps ▪ Habituer les élèves à chercher (essais de calcul, décompositions, dessins) ▪ Faire s’exprimer les élèves sur leur stratégie de calcul (expliquer comment) ▪ Méthode et rigueur sur la pose des opérations (ex : un chiffre par colonne ou par ligne)

10 7 Addition La table d’addition
Mettre en place des stratégies pertinentes dès la GS Avoir une bonne connaissance mentale des nombres (ce qui implique diverses représentations) 7 Exemple : comparaison des représentations du nombre 7 dans divers manuels Exemple d’affichage dans une école

11 Addition La table d’addition
Avoir une bonne connaissance mentale des nombres (ce qui implique diverses représentations) Exemple d’affichage dans une école : CP

12 Apprendre le plus rapidement possible
Addition La table d’addition Apprendre le plus rapidement possible Les doubles (2 + 2, 5 + 5…) - Les compléments à « 10 » (1 + 9, 2 + 8, 3 + 7, 4 + 6, 5 + 5, 6 + 4, …) Domino des compléments à 10 Loto des doubles

13 Addition La table d’addition
Développer des procédures de reconstruction du résultat - L’utilisation des « presque doubles ». « 6 + 7, c’est (6 + 6) + 1, c’est » - Le passage à la dizaine. « 7 + 4, c’est (7 + 3) + 1, c’est » Proposer des situations qui permettent de mettre en jeu les propriétés de l’addition. a + b = b + a =  = =  a +  = c  = 15 c =  +  15 =  + 

14 Jeu de l’escargot Bataille des additions
La table d’addition Connaître sa table d’addition, c’est : Connaître le résultat rapidement (mémoriser) par une utilisation progressive de la table de Pythagore Reconstruire le résultat. Utiliser des stratégies personnelles pour retrouver le résultat Exemple : pour calculer « 3+6 », l’élève doit pouvoir remplacer l’opération par « 6+3 » et éventuellement procéder au surcomptage (7, 8, 9) si cette façon de faire lui facilite la tâche. Jeu de l’escargot Bataille des additions

15 Addition La table d’addition

16 Addition La technique opératoire Préalables à l’addition posée
Une bonne connaissance de la valeur des chiffres dans la numération décimale (numération de position). Le recours régulier au tableau de numération (outil de l’élève) est indispensable (nombres < 1000) C D U La technique utilisée par l’élève doit avoir un sens pour lui. C’est pourquoi elle doit être l’aboutissement formalisé de manipulations qui permettent de lui donner une véritable signification. Ex : le recours aux cartes à points permet cette prise de conscience.

17 Addition La technique opératoire Préalables à l’addition posée
Une technique opératoire ne doit pas être le seul moyen pour l’élève d’effectuer des calculs simples. Il serait regrettable qu’il se réfugie derrière la technique quoiqu’il arrive, sans avoir d’autres possibilités de calcul. Par exemple, il ne devrait pas poser d’addition pour calculer C’est la raison pour laquelle il faut présenter, en parallèle, le calcul en ligne faisant appel à la décomposition des nombres (passage par la dizaine) Exemple tiré de « Cap maths – CP »

18 Addition La technique opératoire Technique de l’addition posée
Le document d’accompagnement des programmes 2002 « le calcul posé à l’école élémentaire » apporte ces précisions (Roland Charnay): ne pas dissocier dans le temps l’étude des cas « sans et avec retenue », afin de ne pas générer l’idée que le calcul se limite à l’addition séparée des chiffres de même valeur. - Le calcul posé en colonnes n’a d’intérêt que pour les nombres d’au moins deux chiffres, et même dans ce cas, le calcul à partir de l’écriture en ligne en repérant le rang de chaque chiffre est aussi efficace et rapide que le calcul posé « en étages ». Il est important de proposer également des additions de plus de deux nombres que les élèves doivent calculer en une seule fois. - Le recours à un ou plusieurs « matériels de numération » permet utilement d’illustrer la technique, et donc de mieux la comprendre, notamment par la correspondance établie entre retenues et groupements par dizaines, centaines…

19 Addition La technique opératoire
Échanges avec manipulation de matériel

20 Addition La technique opératoire Technique de l’addition posée

21 Addition La technique opératoire Technique de l’addition posée

22 Addition Un aide mémoire pour l’élève La table d’addition + 1 2 3 4 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 Addition Un aide mémoire pour l’élève
Le rappel de la technique opératoire 287 peut s’écrire 65 peut s’écrire Je transforme les unités 12 = 1 dizaine et 2 unités Je transforme les dizaines 15 = 1 centaine et 5 dizaines Mon nombre s’écrit : 352 2 centaines 8 dizaines 7 unités + 6 dizaines 5 unités 2 centaines 14 dizaines 12 unités 2 centaines 15 dizaines 2 unités 3 centaines 5 dizaines 2 unités

24 Addition Un aide mémoire pour l’élève Je calcule de droite à gauche
Je commence par la colonne des unités Je calcule = 12 Je pose 2 et je retiens 1 Je continue par la colonne des dizaines Je calcule = 15 Je pose 5 et je retiens 1

25 Addition Un aide mémoire pour l’élève
Un ou des exemples d’opérations posées avec des indications sur la présentation à respecter Traits à la règle Écriture du signe + Un chiffre par ligne ou par colonne …


Télécharger ppt "Techniques opératoires Cycles 2 et 3"

Présentations similaires


Annonces Google