La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

La Logique Issus de l'algèbre de Bool (mathématicien Anglais 1815 - 1864), seuls deux états sont utilisés : Etat « 0 » = abscence, faux Etat « 1 » =

Présentations similaires


Présentation au sujet: "La Logique Issus de l'algèbre de Bool (mathématicien Anglais 1815 - 1864), seuls deux états sont utilisés : Etat « 0 » = abscence, faux Etat « 1 » ="— Transcription de la présentation:

1 La Logique Issus de l'algèbre de Bool (mathématicien Anglais ), seuls deux états sont utilisés : Etat « 0 » = abscence, faux Etat « 1 » = présence, vrai Ce sont les états binaires On définit le complément d'un état : Complément de « 0 » = « 1 » ; noté : /0 = 1 Complément de « 1 » = « 0 » ; noté : /1 = 0

2 Le système logique C'est un ensemble d'opérateurs logiques électriques reliés entre eux et organisés afin d'avoir un fonctionnement souhaité. En fonction des informations binaires reçues en entrées le système logique fournit d'autres informations binaires sur ses sorties. Le système logique est décrit par sa table de vérité : Elle regroupe l'ensemble des états des variables binaires en sortie du système logique en fonction de toutes les combinaisons possibles des variables binaires d'entrées. On la fabrique en remplissant un tableau.

3 Les opérateurs Logiques

4 La logique combinatoire (I)
Etude d'un exemple : Les états binaires en entrées notés ici A et B L' état binaire en sortie noté ici S

5 La logique combinatoire (II)
Les états logiques A, B et S doivent apparaître dans la table de vérité. Nommons toutes les connexions du schéma : A N1 S B Vous remarquerez que l'on procède des entrées vers la sortie (de gauche à droite)

6 La logique combinatoire (III)
On construit ensuite la table de vérité : A B N1 S Remarquez l'ordre de création des colonnes : La ou les entrées (A et B) Les connexions intermédiaires (N1) La ou les sortie (S)

7 La logique combinatoire (IV)
On rempli ensuite la table de vérité : Toujours à partir du schéma on complète les colonnes des sortie, ici S A B N1 S 1 1 1 On commence par définir tous les états possibles sur les entrées A et B A partir du schéma on complète les colonnes intermédiaires , ici N1

8 La logique combinatoire : à vous ! (I)
Déterminez les tables de vérités des schémas suivants :

9 La logique combinatoire : à vous ! (II)


Télécharger ppt "La Logique Issus de l'algèbre de Bool (mathématicien Anglais 1815 - 1864), seuls deux états sont utilisés : Etat « 0 » = abscence, faux Etat « 1 » ="

Présentations similaires


Annonces Google