Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
1
Exemples de modélisation
mathématique du cycle cellulaire MPRI - Bio-informatique formelle - LC
2
MPRI - Bio-informatique formelle - LC
Outline 1. La modélisation mathématique 2. Le cycle cellulaire 3. L’exemple de la levure 4. Biocham et un cycle cellulaire générique 5. Description des projets MPRI - Bio-informatique formelle - LC
3
MPRI - Bio-informatique formelle - LC
Modélisation mathématique classique de systèmes dynamiques non-linéaires MPRI - Bio-informatique formelle - LC
4
Les diagrammes permettent d’organiser les résultats expérimentaux
Un exemple: Protein A Protein B MPRI - Bio-informatique formelle - LC
5
MPRI - Bio-informatique formelle - LC
6
Méthodes de modélisation de systèmes dynamiques et non-linéaires
Une cellule peut être considérée comme un système non-linéaire car certaines de ses parties interagissent, interfèrent ou coopèrent entre elles. comme un système dynamique car elle évolue dans le temps et l’espace Les équations différentielles peuvent être utilisées pour des systèmes qui changent dans le temps de manière continue. Les équations différentielles peuvent suivre les changements de concentrations des protéines en fonction du temps MPRI - Bio-informatique formelle - LC
7
MPRI - Bio-informatique formelle - LC
2. Le cycle cellulaire MPRI - Bio-informatique formelle - LC
8
MPRI - Bio-informatique formelle - LC
Définition Cycle cellulaire : le cycle cellulaire est une succession d’évènements pendant lesquels une cellule grossit et se divise en deux cellules filles, chacune contenant l’information nécessaire pour répéter le processus MPRI - Bio-informatique formelle - LC
9
MPRI - Bio-informatique formelle - LC
Cycle cellulaire Quatre phases G1 Gap entre les phases M et S S Synthèse de l’ADN G2 Gap entre les phases S et M M Mitose MPRI - Bio-informatique formelle - LC
10
Le cycle embryonnaire et le cycle de cellules somatiques
heures Cycle cellulaire d’une cellule somatique typique 12 cycles cellulaires embryonnaires G1 S G2 M Early embryonic and somatic cell cycles in frogs from Murray and Hunt, The Cell Cycle, 1993, fig. 2-2 Une cellule somatique est de petite taille, et doit importer tous les nutriments nécessaires pour qu’elle puisse grandir et dupliquer toutes les composantes de la cellule. L’œuf est déjà de grande taille et possède tous les nutriments nécessaires, les enzymes qui catalysent les procédés du cycle cellulaire, toutes les composantes de la structure de la cellule => pas de G1 et G2. MPRI - Bio-informatique formelle - LC
11
MPRI - Bio-informatique formelle - LC
Régulation du cycle cellulaire par les CDK CDK: est formé de 2 unités: Cdk (cyclin dependent kinase) et son partenaire, une cycline assure l’alternance entre les phases S et M contrôle la taille de la cellule contrôle la réplication de l’ADN vérifie que l’ADN se réplique une fois et une seule fois par cycle Le cycle cellulaire est orchestré par les changements d’activité des complexes Cdk/cycline MPRI - Bio-informatique formelle - LC
12
3. Exemple de la levure de boulanger
MPRI - Bio-informatique formelle - LC
13
Saccharomyces cerevisiae
Le cycle cellulaire de la levure Saccharomyces cerevisiae MPRI - Bio-informatique formelle - LC
14
Les complexes Cdk/cyclines au centre du cycle cellulaire …
MPRI - Bio-informatique formelle - LC
15
MPRI - Bio-informatique formelle - LC
G1 Emergence du bourgeon Division cellulaire Cln2 Cdc28 S M (telophase) Clb5 Cdc28 SPF Ennemis Cdc28 Clb2 Cdc28 G2 MPF M (anaphase) M (metaphase) MPRI - Bio-informatique formelle - LC
16
SPF et MPF en fonction du temps
Concentration des protéines MPF SPF temps G1 S G2 M G1 MPRI - Bio-informatique formelle - LC
17
Différentes manières de réguler l’activité des complexes Cdk/cycline
SPF, MPF Synthèse Phosphorylation Dégradation Inhibition MPRI - Bio-informatique formelle - LC
18
Pourquoi SPF et MPF sont-ils inactifs en phase G1?
ils ne sont pas synthétisés les inhibiteurs sont actifs le processus de dégradation est actif G1 S G2 M MPF SPF temps Concentration des protéines Ennemi MPRI - Bio-informatique formelle - LC
19
Antagonisme entre SPF et MPF
et leurs ennemis Il existe deux états stables G1: ennemis sont présents SPF, MPF sont absents Ennemis START FINISH SPF, MPF S/G2/M: ennemis sont absents SPF, MPF sont présents Comment passe-t-on d’un état à l’autre? MPRI - Bio-informatique formelle - LC
20
Certains mécanismes aident le système à passer par ces transitions
G1 S G2 M MPF SPF temps Concentration des protéines Ennemi Aide Start Finish MPRI - Bio-informatique formelle - LC
21
MPRI - Bio-informatique formelle - LC
Mais en est-on sûr ? MPRI - Bio-informatique formelle - LC
22
Modèle simple à deux variables
CycB APC Assume Cdc28 always present and in excess Cln2 Cdc20 R=40 R=20 R=3 G1 S/G2/M ln(CycB) APC G1 Start Finish S/G2/M ln(CycB) 1 3 40 Phase plane: R=30 and R=60 log scale. Bifurcation diagram: APC activation – describe cell cycle as R changes. Checkpoints are stable steady states imposed or lifted by saddle node bifurcations. Start and Finish are transitions from one state to another once checkpoint is removed by saddle node bifurcation. Based on a model presented by Tyson and Novak in a book published last year: Computational cell Biology, I want to present now the most primitive model of eukaryote cells that would describe the behavior previously described. Cyclins are synthesized in the cytoplasm and associate with Cdc28 very rapidly. The dimer then moves into the nucleus where APC, responsible for degradation processes is also present. CDK phosphorylates and inactivates APC and APC degrades CDK. This interaction is summarized in the first diagram. From this diagram we write the corresponding nonlinear ordinary differential equations to monitor the rate of change of the two species as a function of time. We apply simple laws of kinetics to translate the diagram into mathematical notation. CDK equation (synthesis and degradation) is governed by law of mass action. APC activation and inactivation is described by MM kinetics (into a GK switch). APC is activated by Cdc20 and inactivated by m
23
MPRI - Bio-informatique formelle - LC
Le cycle cellulaire : une hysteresis DNA replication and chromosome alignment S/G2/M Cdc28/CycB activity Start Finish G1 This phenomenon can be viewed in a different way. We argue that the cell cycle exhibits a hysteresis behavior. In other words, we can observe two irreversible transitions in the cell cycle. Once we go from G1 to S/G2/M, we cannot get back to G1 state before finishing the cell cycle. The state of each phase depends on its history. We plot here, the CDKs in terms of a parameter, function of the two helper proteins, Cln2 and Cdc20. We start early in G1 with no Cln2 and no Cdc20, and the CDKs are off. As the cell grows, it will activate Cln2 and the parameter increases. As Cln2 comes up, it will turn off CDKs' enemies and CDKs will activate. This is the Start transition. We are now in S/G2/M state. When the CDKs are on, they inactivate Cln2 and activate the second helper protein, Cdc20. Therefore our parameter decreases. As Cdc20 comes up, it will start a series of events that will inactivate the CDKs and move to the G1 state. This is the Finish transition. We are back in G1. A new daughter cell is born. Growth A + Cln2 B + Cdc20 time Cln2 Cdc20 MPRI - Bio-informatique formelle - LC
24
Un modèle plus réaliste du cycle cellulaire de la levure…
Based on experiments, the pieces of the puzzle are put together to describe a more detailed and realistic model that would explain the physiology of the BY cell cycle… MPRI - Bio-informatique formelle - LC
25
Sister chromatid separation Esp1 spindle defect SBF Pds1 Cdh1/APC Mcm1
Cdc20/APC Tem1-GDP PPX Bub2 Lte1 Tem1-GTP Net1-P Cdc15/MEN Cdc14 Net1 mitosis Mcm1 Cdc20 Cdh1 RENT Mad2 CDKs growth IEP unattached kinetochores Cdc20 Mcm1 Cdh1 Clb2 APC and Inactive trimer Cln3 Cdc14 Swi5 CDKs SCF CKI P CKI Bck2 Cdc14 ? Inactive trimer MBF Cdc20/APC Clb5 Clb2 DNA synthesis SBF SCF Cln2 Budding Chen et al. 2004, MBC
26
MPRI - Bio-informatique formelle - LC
Ce modèle peut-il décrire de manière quantitative ce que l’on sait de la physiologie de la levure ? MPRI - Bio-informatique formelle - LC
27
des modèles mathématiques
Pour cela, il nous faut des modèles mathématiques MPRI - Bio-informatique formelle - LC
28
Construction classique d’un modèle mathématique
A partir d’un diagramme … k1 = , v2’ = 0.001, v2” = 0.17, k3’ = 0.02, k3” = 0.85, k4’ = 0.01, k4” = 0.9, J3 = 0.01, J4 = 0.01, k9 = 0.38, k10 = 0.2, k5’ = 0.005, k5” = 2.4, J5 = 0.5, k6 = 0.33, k7 = 2.2, J7 = 0.05, k8 = 0.2, J8 = 0.05, … on dérive des équations différentielles… et des valeurs des paramètres. MPRI - Bio-informatique formelle - LC
29
MPRI - Bio-informatique formelle - LC
Une approche mathématique classique synthesis degradation binding synthesis degradation activation inactivation MPRI - Bio-informatique formelle - LC
30
Comment choisir les paramètres ?
Un exemple: Cln2 from half-life measurements, Barral et al. (1995) Genes Dev. 9:399. from Cross’ measurements of total Cln2 in asynchronous culture, Cross et al. (2002) Mol. Biol. Cell 13:52-70. when simulating over-expression, this parameter is set to 0.15 Pas toujours aussi simple… MPRI - Bio-informatique formelle - LC
31
Simulation de la cellule fille (type sauvage)
Concentration (a.u.) CKI Mass Cln2 Clb2 Cdh1 Clb5 Cdc20 Time (min) MPRI - Bio-informatique formelle - LC
32
Comparaison entre données expérimentales et la simulation mathématique du modèle complexe
Concentration (a.u.) Mass CKI Cln2 MPF Cdh1 SPF Cdc20 Time (min)
33
Est-ce tout ce qu’un modèle mathématique
peut ou doit faire? Le modèle devrait pouvoir décrire aussi les mutations associées aux protéines présentes dans le modèle : → si le mutant est viable : Quelle est la longueur de la phase G1 ? Quelle est la taille de la cellule lors de la division ? … → si le mutant n’est pas viable : A quel moment du cycle cellulaire s’arrête-t-il? Mutant: cdc20ts Arrêt en metaphase Type sauvage Mutant: clnΔ sic1Δ Viable mais plus grosse cellule que type sauvage Mutant: clnΔ Arrêt en G1 MPRI - Bio-informatique formelle - LC
34
MPRI - Bio-informatique formelle - LC
Quelques exemples Cln2 Clb2 Cdh1 CKI Cdc20 Wild Type Un cycle cellulaire normal Cdh1 CKI cln Mutant: cln- Paramètres à changer : ksn2’, ksn2’’=0 Phénotype : Arrêt en phase G1 Pds1 Clb2 Cdh1 Clb5 Cdc14 cdc20 Mutant: cdc20- Paramètres à changer : ks20=0 Phénotype : Arrêt en métaphase MPRI - Bio-informatique formelle - LC
35
Cln mutants 1. cln1 cln2 2. GAL-CLN2 cln1 cln2 3. cln1 cln2 sic1 4. cln1 cln2 GAL-CLN2 sic1 5. cln1 cln2 cdh1 6. cln1 cln2 GAL-CLN2 cdh1 7. cln3 8. GAL-CLN3 9. cln3 sic1 10. GAL-CLN3 sic1 Bck2 mutants 11. bck2Δ 12. 5X BCK2 13. cln1 cln2Δ bck2Δ 14. cln3Δ bck2Δ 15. cln3Δ bck2Δ GAL-CLN2 cln1Δ cln2Δ 16. cln3Δ bck2Δ GAL-CLB5 17. cln3Δ bck2Δ sic1Δ cln1 cln2 cln3 strain 18. cln1Δ cln2Δ cln3Δ 19. cln1Δ cln2Δ GAL-CLN2 cln3Δ 20. cln1Δ cln2Δ cln3Δ GAL-CLN3 21. cln1Δ cln2Δ cln3Δ sic1Δ 22. cln1Δ cln2Δ cln3Δ cdh1Δ 23. cln1Δ cln2Δ cln3Δ 2X CLB5 24. cln1Δ cln2Δ cln3Δ GAL-CLB5 25. cln1Δ cln2Δ cln3Δ 5X BCK2 26. cln1Δ cln2Δ cln3Δ GAL-CLB2 27. cln1Δ cln2Δ cln3Δ apcts Cdh1, Sic1 and Cdc6 mutants 28. sic1 29. GAL-SIC1 30. GAL-SIC1-db- 31. GAL-SIC1 cln1 cln2 32. GAL-SIC1 cln1 cln2 cdh1 33. GAL-SIC1 GAL-CLN2 cln1 cln2 34. GAL-SIC1 GAL-CLN2 cln1 cln2 cdh1 35. sic1 cdh1 36. cdh1 37. Cdh1 constitutively active 38. cdc647 39. cdc647 sic1 40. cdc647 cdh1 Clb1 Clb2 mutants 41. clb1 clb2 42. GAL-CLB2 43. Multicopy GAL-CLB2 44. GAL-CLB2 sic1 45. GAL-CLB2 cdh1 46. GAL-CLB2 GAL-CLN2 cln1 cln2 47. Clb2-db- 48. Clb2-db- 3X SIC1 49. Clb2-db- pds1 clb5 50. Clb2-db- pds1 clb5 cdc20 51. GAL-CLB2-db- Clb5 Clb6 mutants 52. clb5 clb6 53. clb5 cln1 cln2 54. GAL-CLB5 55. GAL-CLB5 sic1 56. GAL-CLB5 cdh1 57. CLB5-db- 58. CLB5-db- sic1 59. CLB5-db- pds1 60. CLB5-db- pds1 cdc20 61. GAL-CLB5-db- Cdc20 mutants 62. cdc20ts 63. cdc20ts clb5Δ 64. cdc20ts pds1Δ 65. cdc20ts pds1Δ clb5Δ 66. GAL-CDC20 67. cdc20ts mad2Δ 68. cdc20ts bub2Δ Pds1/Esp1 interaction 69. pds1Δ Esp1ts 71. PDS1-db-Δ 72. GAL-PDS1-db-Δ 73. GAL-PDS1-db-Δ esp1ts 74. GAL ESP1 cdc20ts MEN pathway mutants 75. tem1Δ 76. TEM1op 77. tem1Δ GAL-CDC15 78. tem1Δ net1ts 79. tem1Δ GAL-CDC14 80. tem1Δ then 2X GAL-SIC1 81. cdc15Δ 82. CDC15op 83. cdc15ts TEM1op 84. cdc15ts net1ts 85. cdc15ts 2X CDC14 86. cdc15ts 2X 50% active CDC14 87. cdc15ts then 2X GAL-SIC1 Exit-of-mitosis mutants 88. net1ts 89. NET1op cdc14ts 91. CDC14op 92. NET1op CDC14op 93. net1ts cdc20ts 94. cdc14ts then 3X GAL-SIC1 95. cdc14ts GAL-SIC1 96. cdc14ts synthetically lethal with sic1Δ 97. cdc14ts synthetically lethal with cdh1Δ 98. cdc14ts synthetically lethal with GAL- CLN2 99. TAB6-1 100. TAB6-1 cdc15ts 101. TAB6-1 clb5Δ clb6Δ 102. TAB6-1 clb2Δ Checkpoint mutants 103. mad2Δ 104. bub2Δ 105. mad2Δ bub2Δ 106. WT in nocodazole. 107. mad2Δ in nocodazole 108. mad2Δ TEM1op in nocodazole 109. mad2Δ pds1Δ in nocodazole 110. bub2Δ in nocodazole 111. bub2Δ clb5Δ in nocodazole 112. bub2Δ pds1Δ in nocodazole 113. bub2Δ mad2Δ in nocodazole 114. pds1Δ in nocodazole 115. net1ts in nocodazole 116. 6X GAL-SIC1 enables WT cells in nocodazole to exit 117. GAL-CDC20 enables WT cells in APC mutants 118. APC-A 119. APC-A cdh1Δ 120. APC-A cdh1Δ rescued by GAL-SIC1 121. APC-A cdh1Δ rescued by GAL-CDC6 122. APC-A cdh1Δ rescued by GAL- CDC20 123. APC-A sic1Δ 124. APC-A GAL-CLB2 125. swi5 126. sic1Δ cdh1Δ GALL-CDC20 127. cdc647 cdh1 sic1 128. cdc6Δ2-49 sic1Δ cdh1Δ GALL-CDC20 129. swi5Δ cdh1Δ 130. swi5Δ cdh1Δ GAL-SIC1 131. swi5Δ GAL-CLB2
36
MPRI - Bio-informatique formelle - LC
10 mutations ne correspondent pas aux résultats expérimentaux. Les mutations que l’on ne peut expliquer permettent de mettre à jour les incertitudes des expériences ou liées aux interactions entre protéines MPRI - Bio-informatique formelle - LC
37
4. Biocham – le cycle cellulaire générique
MPRI - Bio-informatique formelle - LC
38
Un modèle générique du cycle cellulaire
HYPOTHESES : CDK toujours présent et en excès. Une seule cycline est prise en compte (CycB), responsable de l’entrée et la sortie de la phase M CDK s’associent avec CycB formant un complexe phosphorylés à deux sites de phosphorylation (forme inactive). L’activité du complexe Cdk/cycline est contrôlée par > phosphorylation et dephosphorylation > inhibition par un CKI > synthèse et dégradation de CycB non régulées. MPRI - Bio-informatique formelle - LC
39
- Le complexe Cdk/CycB/CKI est dégradé lorsqu’il est phosphorylé
Adapted from Qu et al. (2003) Biophysical Journal. 85. p CDK + CycB CDK P P CycB Cdc25 Cdc25-PP Wee1 Wee1-P CDK P CycB CDK P CycB + CKI CKI CDK CKI CDK P P CycB CycB P - La phosphatase Cdc25-PP (forme phosphorylée) active le complexe Cdk/CycB - La kinase Wee1 (forme non phosphorylée) inactive le complexe Cdk/CycB - Le complexe Cdk/CycB/CKI est dégradé lorsqu’il est phosphorylé - On appelle : MPF (M-phase Promoting Factor) la forme active du complexe Cdk/CycB preMPF la forme inactive du complexe Cdk/CycB (P-Cdk/CycB-P)
40
Définir les conditions initiales
%% Cell cycle Qu et al Biophysical journal absent(preMPF). absent(MPF). absent(C25). absent(C25P). absent(C25PP). absent(Wee1). absent(Wee1P). absent(APC). present(CKI,1). absent(C). absent(CP). Définir des fonctions (macros) macro(CDK,((c0-[preMPF]-[MPF]-[C]-[CP])/c0)). MPRI - Bio-informatique formelle - LC
41
Définir les réactions biochimiques (1)
% Disponibilité de la cycline k1 for _=>CycB. k2*[CycB] for CycB=>_. (k2u*[APC])*[CycB] for CycB=[APC]=>_. % Formation du complexe (k3*CDK*[CycB],k4*[preMPF]) for CycB<=>preMPF. % Activation / Inactivation de MPF par Cdc25PP et Wee1 (k5*[preMPF]) for preMPF=>MPF. [C25PP]*[preMPF] for preMPF=[C25PP]=>MPF. k6*[MPF] for MPF=>preMPF. [Wee1]*[MPF] for MPF=[Wee1]=>preMPF. k7*[MPF] for MPF=>_. k7u*[APC]*[MPF] for MPF=[APC]=>_. MPRI - Bio-informatique formelle - LC
42
Définir les réactions biochimiques (2)
% Dynamique liée à Cdc25 k8 for _=>C25. k9*[C25] for C25=>_. k9*[C25P] for C25P=>_. k9*[C25PP] for C25PP=>_. % Dynamique liée à Cdc25P (forme monophosphorylée) bz*[C25] for C25=>C25P. cz*[MPF]*[C25] for C25=[MPF]=>C25P. az*[C25P] for C25P=>C25. % Dynamique liée à Cdc25PP (forme biphosphorylée) bz*[C25P] for C25P=>C25PP. cz*[MPF]*[C25P] for C25P=[MPF]=>C25PP. az*[C25PP] for C25PP=>C25P. MPRI - Bio-informatique formelle - LC
43
Définir les réactions biochimiques (3)
% Dynamique liée à Wee1 k for _=>Wee1. k11*[Wee1] for Wee1=>_. k11*[Wee1P] for Wee1P=>_. % Dynamique liée à Wee1P bw*[Wee1] for Wee1=>Wee1P. cw*[MPF]*[Wee1] for Wee1=[MPF]=>Wee1P. aw*[Wee1P] for Wee1P=>Wee1. % APC (activée de manière non-linéaire par MPF) (([MPF]*[MPF])/(a*a+([MPF]*[MPF])))/tho for _=[MPF]=>APC. [APC]/tho for APC=>_. MPRI - Bio-informatique formelle - LC
44
Définir les réactions biochimiques (4)
% CKI k12 for _=>CKI. k13*[CKI] for CKI=>_. % Complexation entre MPF et CKI (k14*[CKI]*[MPF],k15*[C]) for CKI+MPF<=>C. % Dynamique du complexe bi*[C] for C=>CP. ci*[MPF]*[C] for C=[MPF]=>CP. ai*[CP] for CP=>C. k16*[CP] for CP=>MPF. k16u*[APC]*[CP] for CP=[APC]=>MPF. MPRI - Bio-informatique formelle - LC
45
Définir les paramètres
parameter(k1,0.2). parameter(k2,0.2). parameter(k3,30). parameter(k4,1). parameter(k5,0.7). parameter(k6,0.7). parameter(k7,0). parameter(k8,1). parameter(k9,1). parameter(k10,0.5). parameter(k11,0.5). parameter(k12,1). parameter(k13,1). parameter(k14,50). parameter(k15,0.1). parameter(k16,1). parameter(k2u,2). parameter(k7u,2). parameter(k16u,5). parameter(c0,200). parameter(a,1). parameter(tho,5). parameter(az,1). parameter(aw,1). parameter(ai,1). parameter(bz,0.1). parameter(bw,0.1). parameter(bi,0.1). parameter(cz,10). parameter(cw,10). parameter(ci,2). MPRI - Bio-informatique formelle - LC
46
MPRI - Bio-informatique formelle - LC
Définir des fonctions % Cacher des molécules dans le graphique hide_molecules(C). hide_molecules(CP). hide_molecules(C25). hide_molecules(C25P). hide_molecules(Wee1P). % Choisir des couleurs pour chaque molécule set_color(MPF, 1). … % Définir le temps de la simulation numerical_simulation(100). % Tracer la solution plot. MPRI - Bio-informatique formelle - LC
47
Simulation d’une cellule de type sauvage
S G2 M G1 S G2 M … MPRI - Bio-informatique formelle - LC
48
MPRI - Bio-informatique formelle - LC
Projets en Biocham Projet 1 : La cascade MAPK Projet 2 : Entrée en phase S Projet 3 : Apoptose (ou activation de la protéine p53) Projet 4 : Un modèle de décision entre prolifération des cellules (entrée en phase S, ici) et apoptose => Résultat du projet 1, 2 et 3 Projet 5 : Un modèle qualitatif régulant l’entrée dans le cycle cellulaire et l’apoptose (Aguda, 2003) MPRI - Bio-informatique formelle - LC
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.