La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

La numération au cycle 2 Montpellier 4 janvier 2012.

Présentations similaires


Présentation au sujet: "La numération au cycle 2 Montpellier 4 janvier 2012."— Transcription de la présentation:

1 La numération au cycle 2 Montpellier 4 janvier 2012

2 Les acquis de l'école maternelle : le nombre et la quantité : l'aspect cardinal du nombre
Si je nomme chaque papillon avec une lettre, A, B, C, D, je ne dirai pas qu'il y a D papillons. Pour le jeune enfant, au début, compter c'est donner un nom à chaque objet : Un, deux, trois, quatre... Pour lui, le quatre, ce n'est pas la quantité, c'est le dernier papillon.

3 Comment l'aider ? Il faut insister sur la quantité.
Pour les petites quantités, il n'est pas nécessaire de faire compter l'enfant. Il peut les reconnaître sans compter. C'est la perception immédiate ou subitizing. Il y a deux papillons, c'est un et encore un.

4 Les représentations du nombre
Le nombre sert à dire la quantité. On le représente de beaucoup de façons différentes. Quel est ce nombre ? Des points alignés Un domino Des doigts Une carte à points Sept Un mot 7 Une écriture chiffrée Une collection

5 Pour l'enfant, l'écriture avec des chiffres est très difficile.
En effet un seul signe représente 7 objets 7 Les autres représentations sont plus faciles. Chaque objet existe encore. On voit chaque doigt. Les dominos et les cartes à points sont des représentations très importantes. On voit chaque point comme dans la collection mais on reconnaît le nombre d'un seul coup comme dans l'écriture chiffrée. Il faut entraîner les élèves à travailler avec toutes ces représentations et à passer d'une représentation à une autre.

6 A l'école élémentaire La numération de position
Dans notre système, les chiffres n'ont pas la même valeur s'ils sont écrits à la place des unités, des dizaines, des centaines, des milliers, etc. La valeur change suivant la position du chiffre : c'est la numération de position. Le 6 vaut 6. Le 1 vaut 10. Le 2 vaut 200. Le 3 vaut Le 5 vaut Attention, un chiffre n'est pas un nombre !!!

7 Un système très performant ... mais pas si facile à comprendre
Supposons que vous arriviez sur une lointaine planète : la planète des Shadoks. Les Shadoks ont un langage restreint, ils ne connaissent que quelques sons : GA, BU, ZO, MEU mais avec ce langage, ils ont bâti un système de numération comme le nôtre, beaucoup mieux même. Regardez, vous allez TOUT comprendre !!! Il n'y a pas de Shadoks, je dis GA Je dis BU Je dis ZO Je dis MEU

8 Et après ? Il n'y a pas assez de mots. Comment faire ?
On met tous les Shadoks à la poubelle. Il y a BU poubelle et GA Shadok dehors, on dit BU GA. Et on continue : BU ZO BU BU

9 MEU poubelles et MEU shadoks : MEU MEU
Et si je rajoutais ENCORE un Shadok ??? J'ai trop de poubelles, il me faut inventer un nouveau groupement. Ce sera le container à Shadoks qui contient BUGA poubelles, soit BUGAGA Shadoks. BU container GA poubelle GA Shadok BUGAGA

10 Quel est ce nombre ? ZO GA BU Pour le savoir, revenons à nos Shadoks : Nous avons ZO containers GA poubelle BU Shadok. C'est compliqué ??? C'est normal, nous sommes déjà au CE1.

11 Quelles situations mettre en place ?
Situations de groupements Situations d'échanges La numération de position Situations basées sur l'algorithme de la numération écrite Situations pour travailler les correspondances entre numération écrite et numération orale

12 Situations de groupements
On peut représenter chaque objet par un symbole. Par exemple, 1 c'est un cube 7, c'est A partir de 10, on groupe les cubes et on obtient une barre de 10 cubes. Voici le nombre 12. Si je groupe 10 barres, j'obtiens une plaque de 10 barres. Cette plaque est aussi un groupement de 100 cubes.

13 Situations de groupements
On fait travailler les élèves en leur faisant grouper des objets par paquets de dix. Des bûchettes Des jetons Des bouchons

14 Groupements Les paquets de dix objets sont eux-même groupés par 10.
1 gros paquet, c'est 10 petits paquets ou 100 objets. On demande aux élèves de grouper des haricots en les mettant par 10 dans des enveloppes. Il y a 24 haricots Les enveloppes sont groupées par 10 dans des pochettes. Il y a 138 haricots

15 Progressivement, les élèves vont dessiner les objets qu'ils ont manipulés. Les nombres ne seront plus représentés comme objets isolés mais comme groupements. Il est important de reprendre le travail avec des objets réels quand on introduit une nouvelle classe de nombres. En particulier au CE1, on reprend le travail avec des objets réels au moment de l'introduction de la centaine. Le matériel avec les cubes, les barres et les plaques est intéressant parce qu'il est facile à dessiner et permettra une extension vers les grands nombres.

16

17 Quel est ce nombre ?

18 Ce système, où l'on dessine un symbole différent pour chaque « taille de paquet » a été beaucoup utilisé, par exemple par les Égyptiens. Il est très clair, facile à comprendre. Par contre, il est très lourd à utiliser. Pour 342 par exemple, il faut faire 3 dessins de centaines, 4 dessins de dizaines et 2 dessins d'unités.

19 Groupements : situations de référence
Les fourmilions Les lentilles (Ermel) Les carnets de timbres

20 Situations d'échanges On peut échanger une barre contre 10 cubes ou 10 cubes contre une barre. On peut échanger 1 plaque contre 10 barres ou contre 100 cubes.

21 J'ai moins d'objets mais plus de valeur.
Quantités et valeurs Les jeux d'échanges servent à faire la différence entre quantité et valeur. Par exemple, si j'ai « 2 barres »,  j'ai davantage que si j'ai « 6 cubes »  J'ai moins d'objets mais plus de valeur.

22 Exemples d'échanges Quel est ce nombre ? Décomposition du nombre :
3 centaines + 4 dizaines + 2 unités = 342 Attention : 3 plaques, 4 barres et 2 cubes, c'est pareil que 342 cubes c 'est pareil que 3 plaques et 42 cubes C'est pareil que 34 barres et 2 cubes Avec les élèves, on travaille toutes les décompositions possibles. C'est important pour la compréhension de la numération.

23 Quantités et valeurs La barre est plus grosse que le cube, cela aide l'enfant à comprendre la différence entre la valeur et la quantité mais il ne faut pas en rester là. Il faut arriver à utiliser des objets d'allure identique Par exemple, des cartons sur lesquels est inscrit leur valeur Reprenons l'exemple de 342 C'est «  3 cartons de 100, etc. 100 100 100 10 10 10 10 1 1

24 Échanges : situations de référence
Le banquier Le marché Le jeu de la cible

25 Numération de position
Au lieu de symboliser chaque unité, dizaine, centaine par un dessin, on écrit le nombre d'unités, dizaines, centaines dans la colonne correspondante. 342 : 3 centaines, 4 dizaines, 2 unités

26 Le tableau de numération Shadok
BU MEU ZO On a BU container ou BUGA poubelles ou BUGAGA Shadoks On ajoute MEU poubelles, c'est à dire MEUGA Shadoks. Et enfin ZO shadoks. Ça nous fait pas mal de Shadoks en vrac. C'était mieux quand ils étaient en paquets.

27 Situation de référence
Le zyglotron Jeu de commandes

28 Quelques problèmes à résoudre
J’ai ZOGAMEU perles. Je veux faire des colliers de BUZO perles. Combien vais-je pouvoir en faire et combien de perles me restera-t-il ? J’ai acheté BUMEU cartons de MEU bouteilles. Combien de bouteilles j’ai en tout ? Construisez la table de multiplication de MEU. Faites la liste des BUMEU premiers carrés.

29 Régularité du système de numération écrit
C'est un système complètement régulier et infini.

30 Le problème spécifique du « 0 »

31

32 Compléter le tableau...

33 Le tableau des nombres chez les Shadoks

34 Le tableau des nombres : comment aider les élèves ?
Un tableau des nombres peut être affiché dans la classe pour aider à la prise de repères. On fait des exercices en cachant quelques nombres et en demandant aux élèves de les retrouver. Ils vont repérer les régularités. On pourra leur demander ensuite de reconstituer un tableau de nombres en morceaux.

35 Une autre représentation :
la spirale des nombres

36 Encore une autre représentation :
la rouleau des nombres

37 Le système écrit 793 799 En CE1, on travaille sur des morceaux de tableau de nombres qui contiennent des nombres plus grands. On leur demande de trouver le nombre précédent et le nombre suivant en insistant sur les passages de dizaines et de centaines. Quel est le nombre d'avant, quel est le nombre d'après ? 809

38 Situations de référence
Le jeu du château Le jeu du compteur

39 Numération écrite et mots-nombres
Les mots pour dire les nombres sont très irréguliers. Les nombres de 11 à 16 : on dit dix-sept mais on ne dit pas dix-un, dix-deux. On dit onze, douze, ... Chaque dizaine a un nom particulier vingt, trente, etc., alors que pour les centaines, on dit deux cents, trois cents, etc. Les dizaines sont irrégulières à partir de 69 : 70, c'est (soixante-dix) 80, c'est 4 x 20 (quatre-vingts)

40 Correspondance entre système écrit et numération orale
Voilà ce que serait notre système s'il était régulier :

41

42 Comment aider les élèves ?
Dans les exercices quotidiens, on utilisera la numération en chiffres et la numération parlée ensemble. Si l'élève ne sait pas dire un nombre, on l'encourage à l'écrire en expliquant que le système écrit est régulier et que le système oral ne l'est pas. On peut afficher dans la classe des suites de nombre en colonnes avec les deux façons (mots et chiffres).

43 Les nombres choisis dépendent du niveau de la classe.
On fait reconstituer aux élèves des morceaux de suites de nombres en colonnes. Les nombres choisis dépendent du niveau de la classe. quatre-vingt-dix-huit 99 Cent Cent-un 102

44 Situations de référence
Le furet Plouf dans l'eau

45 Et n'oubliez pas cette devise Shadok !


Télécharger ppt "La numération au cycle 2 Montpellier 4 janvier 2012."

Présentations similaires


Annonces Google