La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Les IDENTITÉS TRIGONOMÉTRIQUES

Présentations similaires


Présentation au sujet: "Les IDENTITÉS TRIGONOMÉTRIQUES"— Transcription de la présentation:

1 Les IDENTITÉS TRIGONOMÉTRIQUES

2 Radian et longueur d’arc
1 -1 y x Radian et longueur d’arc A Dans tout cercle de rayon « r », on détermine la longueur d’un arc AB de la façon suivante : r m AB =  x r B Exemples : Dans un cercle de rayon 6 cm, quelle est la mesure de l’arc intercepté par un angle au centre de 1,5 rad ? m AB = 1,5 x 6 m AB = 9 cm

3 Coordonnées équivalentes du cercle trigonométrique
Ex. : Déterminer les coordonnées du point correspondant sur le cercle trigonométrique. Exprimer la valeur exacte lorsque c’est possible. 7 6 a) rad

4 y  x -1 1 P( ) = ( , ) 2 3 P( ) = ( , ) P( ) = ( , ) - P( ) = ( , )
6 4 7 5 4 3 2 11 P( ) = ( 1 , 0 )

5 Coordonnées équivalentes du cercle trigonométrique
Ex. : Déterminer les coordonnées du point correspondant sur le cercle trigonométrique. Exprimer la valeur exacte lorsque c’est possible. 7 6 a) rad Réponse : ( , ) - 3 2 -1 2 -  4 b) rad

6 y  x -1 1 P( ) = ( , ) 2 3 P( ) = ( , ) P( ) = ( , ) - P( ) = ( , )
6 4 7 5 4 3 2 11 P( ) = ( 1 , 0 )

7 Coordonnées équivalentes du cercle trigonométrique
Ex. : Déterminer les coordonnées du point correspondant sur le cercle trigonométrique. Exprimer la valeur exacte lorsque c’est possible. 7 6 a) rad Réponse : ( , ) - 3 2 -1 2 -  4 b) rad Réponse : ( , ) 2 - 2 2 11 4 c) rad

8 y  x -1 1 P( ) = ( , ) 2 3 P( ) = ( , ) P( ) = ( , ) - P( ) = ( , )
6 4 7 5 4 3 2 11 P( ) = ( 1 , 0 )

9 Coordonnées équivalentes du cercle trigonométrique
Ex. : Déterminer les coordonnées du point correspondant sur le cercle trigonométrique. Exprimer la valeur exacte lorsque c’est possible. 7 6 a) rad Réponse : ( , ) - 3 2 -1 2 -  4 b) rad Réponse : ( , ) 2 - 2 2 11 4 c) rad Réponse : ( , ) - 2 2 2 10 3 d) rad

10 y  x -1 1 P( ) = ( , ) 2 3 P( ) = ( , ) P( ) = ( , ) - P( ) = ( , )
6 4 7 5 4 3 2 11 P( ) = ( 1 , 0 )

11 Coordonnées équivalentes du cercle trigonométrique
Ex. : Déterminer les coordonnées du point correspondant sur le cercle trigonométrique. Exprimer la valeur exacte lorsque c’est possible. 7 6 a) rad Réponse : ( , ) - 3 2 -1 2 -  4 b) rad Réponse : ( , ) 2 - 2 2 11 4 c) rad Réponse : ( , ) - 2 2 2 10 3 d) rad Réponse : ( , ) -1 2 - 3 2

12 Coordonnées équivalentes du cercle trigonométrique
Ex. : Déterminer les coordonnées du point correspondant sur le cercle trigonométrique. Exprimer la valeur exacte lorsque c’est possible. - 8 6 e) rad

13 y  x -1 1 P( ) = ( , ) 2 3 P( ) = ( , ) P( ) = ( , ) - P( ) = ( , )
6 4 7 5 4 3 2 11 P( ) = ( 1 , 0 )

14 Coordonnées équivalentes du cercle trigonométrique
Ex. : Déterminer les coordonnées du point correspondant sur le cercle trigonométrique. Exprimer la valeur exacte lorsque c’est possible. - 8 6 e) rad Réponse : ( , ) -1 2 3 2 -  2 f) rad

15 y  x -1 1 P( ) = ( , ) 2 3 P( ) = ( , ) P( ) = ( , ) - P( ) = ( , )
6 4 7 5 4 3 2 11 P( ) = ( 1 , 0 )

16 Coordonnées équivalentes du cercle trigonométrique
Ex. : Déterminer les coordonnées du point correspondant sur le cercle trigonométrique. Exprimer la valeur exacte lorsque c’est possible. - 8 6 e) rad Réponse : ( , ) -1 2 3 2 -  2 f) rad Réponse : ( , ) - 1 g) - 5 rad

17 y  x -1 1 P( ) = ( , ) 2 3 P( ) = ( , ) P( ) = ( , ) - P( ) = ( , )
6 4 7 5 4 3 2 11 P( ) = ( 1 , 0 )

18 Coordonnées équivalentes du cercle trigonométrique
Ex. : Déterminer les coordonnées du point correspondant sur le cercle trigonométrique. Exprimer la valeur exacte lorsque c’est possible. - 8 6 e) rad Réponse : ( , ) -1 2 3 2 -  2 f) rad Réponse : ( , ) - 1 g) - 5 rad Réponse : ( , ) - 1 11 8 11 8 11 8 h) rad Réponse : ( , ) cos sin ( - 0,3827 , - 0,9239 )

19 Les 3 identités trigonométriques IDENTITÉ # 1 Par Pythagore : 
-1 y x Les 3 identités trigonométriques P() = ( , ) cos  x sin  y IDENTITÉ # 1 1 y Par Pythagore : x2 + y2 = 12 x Donc : cos2 + sin2 = 1

20 IDENTITÉ # 2 IDENTITÉ # 3 À partir de l’identité #1 :
cos2 + sin2 = 1 RAPPEL cos2 cos2 cos2 1 1 + tan2 = sec2 = sec  cos  1 = cosec  sin  IDENTITÉ # 3 1 = cot  tan  À partir de l’identité #1 : cos2 + sin2 = 1 sin2 sin2 sin2 cot2 = cosec2

21 1 1 + = 1 1 1 + = 1 1 1 cos2 sin2 cos2 + sin2 = 1 1 = 1
Ex. #1 : Démontrer + = 1 sec2 cosec2 1 1 + = 1 1 1 cos2 sin2 cos2 + sin2 = 1 1 = 1 Ce symbole signifie que la démonstration est terminée ! On peut aussi écrire CQFD (ce qu’il fallait démontrer). 21

22 Ex. #2 : Démontrer cos x  tan x = sin x cos x  sin x = sin x cos x
Simplifier (1 + tan2x) cos2x (sec2x) cos2x 1 cos2x cos2x 1 22

23 Ex. #4 : Démontrer tan2x – tan2x sin2x = sin2x
tan2x (cos2x) = sin2x sin2 x (cos2x) = sin2x cos2x sin2x = sin2x 23

24 1 sin x 1 sin x sin x sin x sin x sin x
Ex. #5 : Démontrer 1 – sin x = cot x cos x sin x 1 – sin2x = cot x cos x sin x sin x 1 – sin2x = cot x cos x sin x cos2x = cot x cos x sin x cos x cos x = cot x cos x sin x cot x cos x = cot x cos x 24

25 Autres identités Somme de u et v    
sin (u + v) = sin(u) cos(v) + sin(v) cos(u) cos (u + v) = cos(u) cos(v) – sin(u) sin(v) Ex. : Soit u = et v = , calculer précisément sin ( ) . 4 3 4 3 25

26 Somme de u et v sin (u + v) = sin(u) cos(v) + sin(v) cos(u) cos (u + v) = cos(u) cos(v) – sin(u) sin(v) Ex. : Soit u = et v = , calculer précisément sin (u + v) . 4 3 sin ( ) = 4 3 sin ( ) 4 cos ( ) 3 + sin ( ) 3 cos ( ) 4 sin ( ) = 7 12 ( ) 2 ( ) 1 2 + ( ) 3 2 ( ) 2 sin ( ) = 7 12 ( ) 2 4 + ( ) 6 4 sin ( ) = 7 12 + 2 6 4 26

27 Différence entre u et v   
sin (u – v) = sin(u) cos(v) – sin(v) cos(u) cos (u – v) = cos(u) cos(v) + sin(u) sin(v) Ex. : Soit u = et v = , calculer précisément cos (u – v) . 3 4 2 3 cos ( – ) = 3 4 2 3 cos ( ) 3 4 cos ( ) 2 3 + sin ( ) 3 4 sin ( ) 2 3 cos ( ) = 12 ( ) - 2 2 ( ) - 1 2 + ( ) 2 ( ) 3 2 cos ( ) = 12 ( ) 2 4 + ( ) 6 4 cos ( ) = 12 + 6 2 4 27

28 cos (- ) = cos   -  y P() = ( , ) cos  x x -1 1 P(- ) = ( , )
28

29 cos (- ) = cos   =    Exemple :  - - -  - Donc : 3 1 -1 y
 = 3 1 -1 y x P( ) = ( , ) 3 cos 1 2 3 3 1 2 x - 3 P( ) = ( , ) - 3 cos 1 2 - 3 Donc : cos 3 = cos - 3 29

30 sin (- ) = - sin   -  y P() = ( , ) sin  y x -1 1 - y
30

31 sin (- ) = - sin   = Exemple :   3  3  - - 3 Donc : - 3 - -
 = 3 1 -1 y x P( ) = ( , ) 3 sin 3 2 3 3 2 y 3 - 3 - 3 2 - y Donc : - 3 2 P( ) = ( , ) - 3 sin - 3 sin - 3 = - sin 3 31


Télécharger ppt "Les IDENTITÉS TRIGONOMÉTRIQUES"

Présentations similaires


Annonces Google