Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parBenine Amine Modifié depuis plus de 9 années
1
ou comment savoir si les différences observées sont significatives
Le Chi 2 ou comment savoir si les différences observées sont significatives
2
Recueillir des données, c’est :
- repérer des variables - repérer les éventualités ou les modalités Exemple : variable sexe 2 modalités Garçon/fille
3
Recueillir des données, c’est aussi :
Observer le résultat de la mesure de l’observation
4
Le test du Khi 2 s’applique
Aux échelles nominales, c’est-à-dire des variables qui n’ont pas une structure mathématique reliant les modalités de l’échelle (ex : le sexe). On parlera aussi d’échelles à catégories « discrètes »
5
Le test du Khi 2 s’appuie sur
L’hypothèse nulle (HO) à partir de laquelle on va pouvoir déduire l’existence d’une implication statistique
6
Exemple Supposons l’enquête sur les loisirs des lycéens. L’hypothèse formulée est qu’il y a une différence entre les filles et les garçons en matière de cours particuliers. Pour vérifier cela, on ne dispose que d’un échantillon de population et non de l’ensemble des lycéens. H0 : au niveau parent, il y a une différence égale à 0 entre les résultats moyens des garçons et ceux des filles. M1-M2=0. L’objectif, à travers l’hypothèse nulle, est de calculer la probabilité de trouver par hasard la statistique obtenue, si l’hypothèse nulle est vraie et si l’échantillon a été extrait au hasard.
7
Application Je veux si savoir si le sexe (variable indépendante) influe sur le fait de suivre des cours particuliers (variable dépendante). En d’autres termes, je vérifie si oui (rejet de l’HO) ou non le fait de suivre des cours particuliers dépend du sexe.
8
Enquête loisirs des lycéens
Je croise la variable 1 et la variable 38 dans modalisa. Je mets toujours en ligne la variable indépendante. Je présente toujours mon tableau des pourcentages en ligne.
9
Je constate que Tableau: % Lignes oui non TOTAL garçon 9,1 90,9 100,0
38. Cours particuliers 1. sexe Tableau: % Lignes oui non TOTAL garçon 9,1 90,9 100,0 fille 14,4 85,6 100,0 TOTAL 11,9 88,1 100,0 Khi2=4,11 ddl=1 p=0,04 (Significatif)
10
On voit aussi que Le Khi2 est égal à 4,11 Le ddl (degré de liberté) =1
Le p (seuil) est = 0,04 et il est significatif J’ai donc 4% de chance de me tromper en affirmant que les différences observées dans le tableau sont significatives (rejet de l’H0).
11
On voit que Les filles sont plus nombreuses que les garçons à suivre des cours particuliers (14.4% contre 9.1%). Sur 100 garçons, 9.1 suivent des cours particuliers. Sur 100 filles, 14.4 suivent des cours particuliers.
12
Comment se calcule le Khi 2 ?
On passe du tableau des effectifs observés au tableau des effectifs théoriques 690 608 82 TOTAL 361 309 52 fille 329 299 30 garçon non oui TOTAL 318,1 42,9 fille 289,9 39,1 garçon non oui
13
Les effectifs théoriques
Ce sont les effectifs qui auraient été obtenus si les proportions de suivi de cours particuliers étaient dans les deux échantillons rigoureusement équivalentes à la proportion d’ensemble (11.9% soit 82/690*100). Dans ce cas, les effectifs théoriques se calculent de la manière suivante:
14
N4 309 N’ N3 52 N’3 42.9 N2 299 N’ N1 30 N’1 39.5 N’1 = (82*329)/690 N’3 = (82*361)/690 N’2 = (608*329)/690 N’4 = (608*361)/690
15
On applique ensuite la formule suivante:
(effectifs observés – effectifs théoriques)²/ effectifs théoriques pour N1, N2, N3 et N4. Soit : [( )²/39.5]+ [( )²/289.9]+ etc. N4 309 N’ N3 52 N’3 42.9 N2 299 N’ N1 30 N’1 39.5
16
On obtient alors un X² calculé de 4.11
On peut aussi construire le tableau de la participation au X² par case (ou X² partiel) : oui non TOTAL garçon 1,9 ,3 2,2 fille 1,7 ,2 1,9 TOTAL 3,6 ,5 4,1
17
Pour calculer ddl On applique la formule suivante :
Nb ddl = (nb colonnes – 1) (nb lignes – 1) Soit (2-1) (2-1) = 1
18
Trouver le seuil Il faut décider d’un seuil à parti duquel on considèrera la probabilité attachée aux écarts observés entre filles et garçons comme significative ou non significative. On choisit de manière relativement arbitraire un niveau de signification. Ordinairement, en sociologie comme dans les autres disciplines, on choisit une probabilité de .05 ce qui traduit un risque de 5% de chance de se tromper en rejetant l’hypothèse nulle, donc en affirmant qu’il y a bien des différences de résultats entre les garçons et les filles. Si, à ce seuil, H0 ne peut pas être rejetée, on ne peut pas prendre le risque d’affirmer qu’une différence existe. Comment décider du rejet de l’H0 ? On dispose de tables donnant des « valeurs critiques ». Si la valeur calculée sur l’échantillon est supérieure ou égale à la valeur lue dans la table pour le seuil choisi, on rejette l’hypothèse nulle et on accepte l’hypothèse alternative d’une différence de résultat. Dans le cas contraire, on ne peut pas rejeter l’H0. Ici, Modalisa affiche un seuil p = .04. Ce qui traduit un risque de 4% de se tromper en rejetant l’hypothèse nulle, donc en affirmant qu’il y a bien des différences de résultats entre les garçons et les filles.
19
Conditions d’application du X²
Si N>40 et si tous les effectifs théoriques sont supérieurs à 5. Dans notre cas, N = 690 et tous les effectifs théoriques sont supérieurs à 5. Que faire dans le cas contraire ?
20
X² = (Ieff. Obs. – eff. Théo.I – 0.5)²/eff. Théo.
Correction de Yates Si 20 < N < 40 et si tous les effectifs théoriques sont supérieurs à 5, alors X² corrigé On considère que le test du X² est valide à condition d’introduire une correction consistant à diminuer de 0.5 chacun des écarts bruts. X² = (Ieff. Obs. – eff. Théo.I – 0.5)²/eff. Théo.
21
Mesurer la liaison Pour mesurer la liaison :
On dispose d’indices pour évaluer la force de la liaison entre les modalités de nos variables. Avantages de ces indices : Ils sont égaux à 0 en cas d’indépendance Ils tendent vers 1 en cas de dépendance Ils ne dépendent pas du nombre d’observations Premier indice : le coefficient Phi = racine carré du X2/N Pb : dans le cas d’un tableau à 4 cases, si n1 # n3, le maximum de liaison ne peut atteindre 1. Pour pallier cet écueil, on a recours au coefficient de contingence, qui est égal à la racine carré de X2/X2+N. Bien que fiable, ce coefficient atteint, selon les cas, une valeur maximale de pour une liaison parfaite.
22
Valeur maxi de C = racine carré de (q-1) / racine carré de q, q étant le nombre de modalités de la variable qui en comporte le plus, soit 0.95 pour un tableau 10*10, 0.89 pour un tableau 5*5 et 0.71 pour un tableau 2*2.
23
Un atout de Modalisa: Le PEM
LE PEM, POURCENTAGE DE L’ÉCART MAXIMUM : UN INDICE DE LIAISON ENTRE MODALITÉS D’UN TABLEAU DE CONTINGENCE Par Ph. Cibois On définit un indice de liaison entre modalités d’un tableau de contingence, le PEM ou Pourcentage de l’écart maximum. Il permet de construire des profils, c’est-à-dire l’ensemble des modalités de réponse d’une enquête qui sont en attraction avec une modalité donnée. P. CIBOIS, Le P.E.M., Pourcentage de l’écart maximum: un indice de liaison entre modalités d’un tableau de contingence, in Bulletin de Méthodologie Sociologique, N.40, Septembre 1993, pp
24
Mais attention : la liaison n’est pas Causalité
On a toujours tendance à envisager une relation causale entre nos variables. Pourtant, plusieurs types de relations causales peuvent expliquer le lien entre À et B : À cause B ou B cause À (la poule ou l’œuf) Les deux variables ont une cause commune, par exemple lorsque les deux sont causées par une troisième variable. Ex : le redoublement est lié à l’échec scolaire car les deux sont liées à l’origine sociale. Mais on peut aussi dire qu’il existe un intermédiaire causal : une variable provoque un évènement, lui-même étant la cause d’une variable : le redoublement provoque l’échec scolaire, lui-même favorisant les décisions d’abandon scolaire. Etc. En somme, une liaison statistique n’est pas une condition suffisante pour parler de causalité. En revanche le travail qui est fait en amont par le chercheur, en l’occurrence l’élaboration d’un ensemble d’hypothèses théoriques, constitue un moyen de transformer la liaison en causalité.
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.