Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
1
SUPERCAPACITÉS ÉLECTROCHIMIQUES
Daniel Bélanger Université du Québec à Montréal 15 mars 2013
2
NUMBER OF PAPERS AND CITATIONS
Search on Web of Science with : Electrochemical capacitor
3
PLAN DU COURS CONTEXTE ÉNERGÉTIQUE-STOCKAGE
ACCUMULATEURS & SUPERCAPACITÉ ÉLECTROCHIMIQUE CONCEPTS IMPORTANTS D’ÉLECTROCHIMIE STRUCTURE ET CAPACITÉ DE LA DOUBLE COUCHE MÉTHODES DE CARACTÉRISATION Evaluation de la performance MATÉRIAUX Carbon, Conducting polymers, metal oxides Concept of pseudocapacitance FONCTIONNEMENT Systèmes symétrique et asymétrique
4
Electricity and heating Transportation
CO2 emission by sectors Electricity and heating Transportation Manuf. ind and construction How can we reduce them ?
5
ENERGY STORAGE SYSTEMS
Poizot, Dolhem, Energy Environ. Sci. 2011, 4, 2003.
6
PSA Peugeot Citroën Start-Stop System
Reduce fuel consumption by up to 15%
7
AVANTAGES DES CONDENSATEURS
ÉLECTROCHIMIQUES City Bus-Volvo -Simplified system for a city bus, 220kW NiMH-battery NiMH-battery + EC Battery310 kg EC 280 kg DC/DC 90 kg Total weight 680 kg Battery 1150 kg DC/DC 45 kg Total weight 1195 kg Weight reduction: 43 %
8
ENERGY STORAGE WITH ELECTRICAL DOUBLE LAYER CAPACITOR AND BATTERY
Simon, Gogotsi, Nature Materials, 2008, 7, 845.
9
ENERGY STORAGE WITH ELECTRICAL DOUBLE LAYER CAPACITOR AND BATTERY
Chuck Norris Simon, Gogotsi, Nature Materials, 2008, 7, 845.
10
JME 70 kJ of Energy 2 MT vehicle moving 19 mph
2 MT mass lifted to 12 ft height 1 tsp sugar g 1 D-cell alkali battery g 22 kF / 2.5 V capacitor kg From John Miller, JME Capacitor
11
ENERGY STORAGE WITH ELECTRICAL DOUBLE LAYER CAPACITOR AND BATTERY
E = 0.5 C V2 E= Energy C= Capacitance V= Voltage Simon, Gogotsi, Nature Materials, 2008, 7, 845.
12
CAPACITOR VACUUM DIELECTRIC OXIDE ELECTROLYTIC Ta2O5, Al2O3
C = e A / d
13
Accumulateur au plomb
14
Accumulateur au plomb Importance du « curing » ou mûrissage
plaques positives empilées dans une étuve 72h avec fort taux d’humidité Importance de la « formation » charge (formation Pb et PbO2) Pb + PbO2 + H2SO4 Pb + carbone + expandeurs
15
Chemistry of Lead Acid Batteries
When the battery is discharged: Lead (-) combines with the sulfuric acid to create lead sulfate (PbSO4), Pb + SO42- PbSO4 + 2e- Lead oxide (+) combines with hydrogen and sulfuric acid to create lead sulfate and water (H2O). PbO2 + SO H+ + 2e- PbSO4 + 2H2O lead sulfate builds up on the electrodes, and the water builds up in the sulfuric acid solution. Global reaction: Pb + PbO2 + 2 H2SO4 2 PbSO4 + 2 H2O Concentration of H2SO4 changes from 5.5 M to 2 M Lead Acid Batteries Consist of: Lead (Pb) electrode (-) Lead oxide (PbO2) electrode (+) Water and sulfuric acid (H2SO4) electrolyte.
16
Chemistry of Lead Acid Batteries
When the battery is charged: The process reverses; lead sulfate combining with water to build up lead and lead oxide on the electrodes. PbSO4 + 2H2O PbO2 + SO H+ + 2e- PbSO4 + 2e- Pb + SO42- Global reaction: 2 PbSO4 + 2 H2O Pb + PbO2 + 2 H2SO4 Lead Acid Batteries Consist of: Lead (Pb) electrode (-) Lead oxide (PbO2) electrode (+) Water and sulfuric acid (H2SO4) electrolyte.
17
Accumulateur au Pb acide
- V Pb/PbSO4 1.69 V PbSO4/PbO2 +
18
Accumulateur au Pb acide
- V Pb/PbSO4 0 V H2 /H+ 1.23 V H2O /O2 1.69 V PbSO4/PbO2 + vs. ENH
19
Pt/H2SO4(aq)/Pt vs Pb/H2SO4(aq)/PbO2
Platinum Platinum H2SO4 solution H2SO4 solution
20
Pt/H2SO4(aq)/Pt vs Pb/H2SO4(aq)/PbO2
Platinum Platinum Pb PbO2 H2SO4 solution H2SO4 solution H2SO4 solution H2SO4 solution
21
ACCUMULATEUR
22
STRUCTURE D’UN SUPERCONDENSATEUR
ÉLECTROCHIMIQUE
23
CAPACITÉ ÉLECTROCHIMIQUE
24
CAPACITÉ ÉLECTROCHIMIQUE
25
DOUBLE LAYER MODELS Helmholtz Gouy-Chapman Cdl = dq/d(Dy)
26
STRUCTURE OF THE DOUBLE LAYER
Models of Grahame and Bockris
27
STRUCTURE DE LA DOUBLE COUCHE
1/C = 1/CI + 1/CO 1/C = 1/CI 1/C = dH2O/e C= 5 x 8.85 x F/m 2.8 x m = 16 mF/cm2
28
CAPACITY FOR CARBON CAPACITY CDL = 20 µF/cm2 with S = 1000 m2/g
C = 20 x 10-6 F/cm2 x 1000 m2/g x 104 cm2/m2 = 200 F/g
29
ACCUMULATEUR/CAPACITÉ ÉLECTROCHIMIQUE
30
ENERGY STORAGE DEVICES
SUPERCAPACITORS Capacitive or pseudocapacitive charge Fast charge/discharge Long operational life > cycles High power density > 1 kW/kg BATTERIES Faradaic charge Chemical reaction Slow charge/discharge process Shorter operational life High energy density Wh/kg
31
MÉTHODES DE CARACTÉRISATION
CELLULE ÉLECTROCHIMIQUE VOLTAMÉTRIE CYCLIQUE CHARGE/DÉCHARGE À COURANT CONSTANT PERFORMANCES ÉNERGIE, PUISSANCE
32
Cellule
33
VOLTAMETRIE CYCLIQUE
34
VOLTAMÉTRIE CYCLIQUE- Électrode capacitive
35
CALCUL DE LA CAPACITÉ C = QCV/V C= Capacité Qcv = Charge V= Voltage
UNITÉS Farad = Coulombs/Volt Imoyen = 45 mA V = 2.25 V Vitesse de balayage = 225 mV/s Masse = 10 mg C = 20 F/g
36
CHARGE/DÉCHARGE À COURANT CONSTANT
37
COURBE CHARGE/DÉCHARGE
CAPACITÉ => Inverse de la pente
38
CHARGE ET CAPACITÉ I x t (C)
39
COULOMBIC EFFICIENCY, CE
Qdischarge x 100 Qcharge CE (%) =
40
COULOMBIC EFFICIENCY, CE
Qdischarge x 100 Qcharge CE (%) =
41
PERFORMANCE Densité d’énergie et de puissance
Densité d’énergie, Wh kg-1 Densité de puissance, W kg-1
42
ELECTROCHEMICAL CAPACITOR
Electrolyte Current collector Current collector ACTIVE ELECTRODE MATERIAL
43
Equivalent Series Resistance (ESR)
CONTRIBUTION TO ESR -ELECTRONIC RESISTANCE OF THE ELECTRODE MATERIAL -INTERFACIAL RESISTANCE – ELECTRODE/CURRENT COLLECTOR -IONIC DIFFUSION RESISTANCE OF IONS MOVING IS SMALL PORES -ELECTROLYTE RESISTANCE -IONIC RESISTANCE OF IONS MOVING THROUGH THE SEPARATOR
44
COMPOSANTS D’UN SUPERCONDENSATEUR ÉLECTROCHIMIQUE
MATÉRIAUX D’ÉLECTRODES Carbones, Oxydes, Polymères conducteurs Fabrication de l’électrode (additifs) ÉLECTROLYTE Aqueux, Non-aqueux, Liquide ionique COLLECTEUR DE COURANT SÉPARATEUR
45
EC-Areas of research Electrolyte -Aqueous -Non-aqueous -Ionic liquid
Current collector: Surface treatment Electrode materials: Carbon Conducting polymers Metal oxides
46
TECHNOLOGY PERFORMANCE COST STABILITY/SAFETY
47
MATÉRIAUX D’ÉLECTRODES
48
MATERIALS-CAPACITANCE
E = 0.5 CV2 K. Naoi, P. Simon, Interface, 2008, 17, 34
49
CARBONE SURFACE SPÉCIFIQUE ACTIVATION Température élevée COÛT
50
ELECTROCHEMICAL CAPACITOR
Symmetrical cell with 2 identical electrodes
51
PROPERTIES OF ACTIVATED CARBONS
Pore of activated carbon Double-layer capacitance of some carbons Larger than 500Å Smaller than 20Å 20Å ~ 500Å Most surface area is composed of micropores ( more than 90%) Micropores are likely to contribute the most to the energy storage
52
CAPACITANCE – SURFACE AREA
53
EFFECT OF PORE SIZE OF THE CARBON ELECTRODE
(CH3CH2)4N+ Diameter Desolvated: 0.68 nm Solvated; 1.33 nm BF4- Desolvated: 0.48 nm Solvated: 1.16 nm
54
FARADAIC PROCESS => Electron transfer
[Fe(CN)6]3- + e- <==> [Fe(CN)6]4- PbSO4 + 2 H2O <==> PbO2 + 4 H+ + SO e-
55
CAPACITÉ ET PSEUDOCAPACITÉ
Transfert d’électron à l’interface électrode/électrolyte Cpseudo = 10 to 100 Cdl
56
PSEUDOCAPACITÉ
57
PSEUDOCAPACITÉ
58
MANGANESE DIOXIDE, MnO2 Thin film Composite 0.1 M 5 mV/s
59
CHARGE STORAGE MECHANSIM FOR MANGANESE DIOXIDE
Mn4+/3+ MnO H e- <=====> MnOOH MnO C e- <=====> MnOOC Mn = no change (MnO2)surface + C+ + e- <=====> (MnO2-C+) surface CHARGE STORAGE-CRISTALINITY
60
THIN ‘’FILM’’ ELECTRODE XPS-Mn 3s
Pt/MnO2 Mn(III) Na2SO4 0.1 M Mn(IV) Toupin, Brousse and Bélanger, Chem. Mat. 2004, 16, 3184.
61
STRUCTURE-CAPACITANCE RELATIONSHIP
CAPACITANCE vs. SURFACE AREA for Manganese Dioxide Brousse et al. J. Electrochem. Soc. 2006, 153, A2171.
62
Capacitive behaviour of MnO2
0.1M Na2SO4 - 2 mV/s MnO2/PTFE/AB/graphite (forte polarisation en absence de carbone) Fenêtre électrochimique 0,9-1V Capacité ~ 150 F/g qcharge/qdécharge100 % (bonne réversibilité des processus électrochimiques)
63
MAXIMIZE UTILIZATION C+= Li+, Na+, K+, H+ Mn4+ Mn3+ MnO2 C Binder e-
Low ionic conductivity Low electronic conductivity Increase ionic conductivity Increase electronic conductivity Carbon MnO2 Binder
64
ELECTROCHEMICAL UTILIZATION OF MnO2
Mass of MnO2 (mg/cm2) Electrode thickness (µm) Qcv/Qtheo 3 281 12.9 15-16 290 13.0 30-34 555 12.2 45 596 12.5
65
POLYMÈRES CONDUCTEURS
66
Electrochemistry of conducting polymers
p-doping p-dedoping - + -e- Solution p-dedoping n-doping - +e- + Polymer
67
POLYTHIOPHENE DERIVATIVE
-0.008 -0.006 -0.004 -0.002 0.002 0.004 0.006 0.008 -2.5 -2 -1.5 -1 -0.5 0.5 1 Current (A) Potential (V/(Ag/Ag + )) P- n-doping n-undoping + Et4N+ P p-doping p-undoping BF4- P+
68
GALVANOSTATIC CHARGE/DISCHARGE CYCLING
PFPT/PFPT Cut-off voltages: 1.6 to 2.8 ; 3.0 and 3.2 V ICh = IDch = 2 mA/cm2 in 1 M Et4NBF4/ACN DE Potentiel de cellule (V) Courant (A) DE’ Temps (s) Potentiel (V vs. Ag/Ag+)
69
MODE DE FONCTIONNEMENT Cellule symétrique Cellule asymétrique
70
SYSTÈME SYMÉTRIQUE NÉGATIVE POSITIVE
71
CARBON-BASED ELECTROCHEMICAL CAPACITORS
Potential Current Charge
72
CARBON-BASED ELECTROCHEMICAL CAPACITORS
Voltammetric Charge = QCV Potential Current Discharge
73
CARBON-BASED ELECTROCHEMICAL CAPACITORS
QCV (ox) Potential Current QCV (red) Voltammetric charge = QCV
74
50% of the carbon is unemployed!
75
50% of the carbon is unemployed!
Qdischarge (-) = 0.5 QCV (ox) Qdischarge (+) = 0.5 QCV (red)
76
(weight of both electrodes)
CAPACITANCE OF A CELL Single electrode capacitance C+ = C- = F/g Capacitance of a cell (weight of both electrodes) 25 F/g
77
CARBON/CARBON NON-AQUEOUS ELECTROLYTE AQUEOUS ELECTROLYTE
CELL VOLTAGE = 3 V AQUEOUS ELECTROLYTE -CELL VOLTAGE = 1 V Can an electrochemical capacitor have a cell potential > 1 V?
78
SYSTÈME HYBRIDE
79
CARBON/MnO2 J. Long, D. Bélanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes MRS Bulletin, 2011, 36, 523
80
SYSTÈME HYBRIDE Carbone/MnO2 MnO2/MnO2
81
CARBON/MnO2
82
CHARGE/DISCHARGE CURVES
Carbon/MnO2 MnO2/MnO2
83
Symétrique vs Asymétrique- Effet du potentiel de cellule
84
SYSTÈME CARBONE/OXYDE DE PLOMB ÉLECTROLYTE: ACIDE SULFURIQUE
C/H2SO4/PbO2
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.