La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

SUPERCAPACITÉS ÉLECTROCHIMIQUES

Présentations similaires


Présentation au sujet: "SUPERCAPACITÉS ÉLECTROCHIMIQUES"— Transcription de la présentation:

1 SUPERCAPACITÉS ÉLECTROCHIMIQUES
Daniel Bélanger Université du Québec à Montréal 15 mars 2013

2 NUMBER OF PAPERS AND CITATIONS
Search on Web of Science with : Electrochemical capacitor 

3 PLAN DU COURS CONTEXTE ÉNERGÉTIQUE-STOCKAGE
ACCUMULATEURS & SUPERCAPACITÉ ÉLECTROCHIMIQUE CONCEPTS IMPORTANTS D’ÉLECTROCHIMIE STRUCTURE ET CAPACITÉ DE LA DOUBLE COUCHE MÉTHODES DE CARACTÉRISATION Evaluation de la performance MATÉRIAUX Carbon, Conducting polymers, metal oxides Concept of pseudocapacitance FONCTIONNEMENT Systèmes symétrique et asymétrique

4 Electricity and heating Transportation
CO2 emission by sectors Electricity and heating Transportation Manuf. ind and construction How can we reduce them ?

5 ENERGY STORAGE SYSTEMS
Poizot, Dolhem, Energy Environ. Sci. 2011, 4, 2003.

6 PSA Peugeot Citroën Start-Stop System
Reduce fuel consumption by up to 15%

7 AVANTAGES DES CONDENSATEURS
ÉLECTROCHIMIQUES City Bus-Volvo -Simplified system for a city bus, 220kW NiMH-battery NiMH-battery + EC Battery310 kg EC 280 kg DC/DC 90 kg Total weight 680 kg Battery 1150 kg DC/DC 45 kg Total weight 1195 kg Weight reduction: 43 %

8 ENERGY STORAGE WITH ELECTRICAL DOUBLE LAYER CAPACITOR AND BATTERY
Simon, Gogotsi, Nature Materials, 2008, 7, 845.

9 ENERGY STORAGE WITH ELECTRICAL DOUBLE LAYER CAPACITOR AND BATTERY
Chuck Norris Simon, Gogotsi, Nature Materials, 2008, 7, 845.

10 JME 70 kJ of Energy 2 MT vehicle moving 19 mph
2 MT mass lifted to 12 ft height 1 tsp sugar g 1 D-cell alkali battery g 22 kF / 2.5 V capacitor kg From John Miller, JME Capacitor

11 ENERGY STORAGE WITH ELECTRICAL DOUBLE LAYER CAPACITOR AND BATTERY
E = 0.5 C V2 E= Energy C= Capacitance V= Voltage Simon, Gogotsi, Nature Materials, 2008, 7, 845.

12 CAPACITOR VACUUM DIELECTRIC OXIDE ELECTROLYTIC Ta2O5, Al2O3
C = e A / d

13 Accumulateur au plomb

14 Accumulateur au plomb Importance du « curing » ou mûrissage
plaques positives empilées dans une étuve 72h avec fort taux d’humidité Importance de la « formation » charge (formation Pb et PbO2) Pb + PbO2 + H2SO4 Pb + carbone + expandeurs

15 Chemistry of Lead Acid Batteries
When the battery is discharged: Lead (-) combines with the sulfuric acid to create lead sulfate (PbSO4), Pb + SO42-  PbSO4 + 2e- Lead oxide (+) combines with hydrogen and sulfuric acid to create lead sulfate and water (H2O). PbO2 + SO H+ + 2e-  PbSO4 + 2H2O lead sulfate builds up on the electrodes, and the water builds up in the sulfuric acid solution. Global reaction: Pb + PbO2 + 2 H2SO4  2 PbSO4 + 2 H2O Concentration of H2SO4 changes from 5.5 M to 2 M Lead Acid Batteries Consist of: Lead (Pb) electrode (-) Lead oxide (PbO2) electrode (+) Water and sulfuric acid (H2SO4) electrolyte.

16 Chemistry of Lead Acid Batteries
When the battery is charged: The process reverses; lead sulfate combining with water to build up lead and lead oxide on the electrodes. PbSO4 + 2H2O  PbO2 + SO H+ + 2e- PbSO4 + 2e-  Pb + SO42- Global reaction: 2 PbSO4 + 2 H2O Pb + PbO2 + 2 H2SO4 Lead Acid Batteries Consist of: Lead (Pb) electrode (-) Lead oxide (PbO2) electrode (+) Water and sulfuric acid (H2SO4) electrolyte.

17 Accumulateur au Pb acide
- V Pb/PbSO4 1.69 V PbSO4/PbO2 +

18 Accumulateur au Pb acide
- V Pb/PbSO4 0 V H2 /H+ 1.23 V H2O /O2 1.69 V PbSO4/PbO2 + vs. ENH

19 Pt/H2SO4(aq)/Pt vs Pb/H2SO4(aq)/PbO2
Platinum Platinum H2SO4 solution H2SO4 solution

20 Pt/H2SO4(aq)/Pt vs Pb/H2SO4(aq)/PbO2
Platinum Platinum Pb PbO2 H2SO4 solution H2SO4 solution H2SO4 solution H2SO4 solution

21 ACCUMULATEUR

22 STRUCTURE D’UN SUPERCONDENSATEUR
ÉLECTROCHIMIQUE

23 CAPACITÉ ÉLECTROCHIMIQUE

24 CAPACITÉ ÉLECTROCHIMIQUE

25 DOUBLE LAYER MODELS Helmholtz Gouy-Chapman Cdl = dq/d(Dy)

26 STRUCTURE OF THE DOUBLE LAYER
Models of Grahame and Bockris

27 STRUCTURE DE LA DOUBLE COUCHE
1/C = 1/CI + 1/CO 1/C = 1/CI 1/C = dH2O/e C= 5 x 8.85 x F/m 2.8 x m = 16 mF/cm2

28 CAPACITY FOR CARBON CAPACITY CDL = 20 µF/cm2 with S = 1000 m2/g
C = 20 x 10-6 F/cm2 x 1000 m2/g x 104 cm2/m2 = 200 F/g

29 ACCUMULATEUR/CAPACITÉ ÉLECTROCHIMIQUE

30 ENERGY STORAGE DEVICES
SUPERCAPACITORS Capacitive or pseudocapacitive charge Fast charge/discharge Long operational life > cycles High power density > 1 kW/kg BATTERIES Faradaic charge Chemical reaction Slow charge/discharge process Shorter operational life High energy density Wh/kg

31 MÉTHODES DE CARACTÉRISATION
CELLULE ÉLECTROCHIMIQUE VOLTAMÉTRIE CYCLIQUE CHARGE/DÉCHARGE À COURANT CONSTANT PERFORMANCES ÉNERGIE, PUISSANCE

32 Cellule

33 VOLTAMETRIE CYCLIQUE

34 VOLTAMÉTRIE CYCLIQUE- Électrode capacitive

35 CALCUL DE LA CAPACITÉ C = QCV/V C= Capacité Qcv = Charge V= Voltage
UNITÉS Farad = Coulombs/Volt Imoyen = 45 mA V = 2.25 V Vitesse de balayage = 225 mV/s Masse = 10 mg C = 20 F/g

36 CHARGE/DÉCHARGE À COURANT CONSTANT

37 COURBE CHARGE/DÉCHARGE
CAPACITÉ => Inverse de la pente

38 CHARGE ET CAPACITÉ I x t (C)

39 COULOMBIC EFFICIENCY, CE
Qdischarge x 100 Qcharge CE (%) =

40 COULOMBIC EFFICIENCY, CE
Qdischarge x 100 Qcharge CE (%) =

41 PERFORMANCE Densité d’énergie et de puissance
Densité d’énergie, Wh kg-1 Densité de puissance, W kg-1

42 ELECTROCHEMICAL CAPACITOR
Electrolyte Current collector Current collector ACTIVE ELECTRODE MATERIAL

43 Equivalent Series Resistance (ESR)
CONTRIBUTION TO ESR -ELECTRONIC RESISTANCE OF THE ELECTRODE MATERIAL -INTERFACIAL RESISTANCE – ELECTRODE/CURRENT COLLECTOR -IONIC DIFFUSION RESISTANCE OF IONS MOVING IS SMALL PORES -ELECTROLYTE RESISTANCE -IONIC RESISTANCE OF IONS MOVING THROUGH THE SEPARATOR

44 COMPOSANTS D’UN SUPERCONDENSATEUR ÉLECTROCHIMIQUE
MATÉRIAUX D’ÉLECTRODES Carbones, Oxydes, Polymères conducteurs Fabrication de l’électrode (additifs) ÉLECTROLYTE Aqueux, Non-aqueux, Liquide ionique COLLECTEUR DE COURANT SÉPARATEUR

45 EC-Areas of research Electrolyte -Aqueous -Non-aqueous -Ionic liquid
Current collector: Surface treatment Electrode materials: Carbon Conducting polymers Metal oxides

46 TECHNOLOGY PERFORMANCE COST STABILITY/SAFETY

47 MATÉRIAUX D’ÉLECTRODES

48 MATERIALS-CAPACITANCE
E = 0.5 CV2 K. Naoi, P. Simon, Interface, 2008, 17, 34

49 CARBONE SURFACE SPÉCIFIQUE ACTIVATION Température élevée COÛT

50 ELECTROCHEMICAL CAPACITOR
Symmetrical cell with 2 identical electrodes

51 PROPERTIES OF ACTIVATED CARBONS
Pore of activated carbon Double-layer capacitance of some carbons Larger than 500Å Smaller than 20Å 20Å ~ 500Å Most surface area is composed of micropores ( more than 90%) Micropores are likely to contribute the most to the energy storage

52 CAPACITANCE – SURFACE AREA

53 EFFECT OF PORE SIZE OF THE CARBON ELECTRODE
(CH3CH2)4N+ Diameter Desolvated: 0.68 nm Solvated; 1.33 nm BF4- Desolvated: 0.48 nm Solvated: 1.16 nm

54 FARADAIC PROCESS => Electron transfer
[Fe(CN)6]3- + e- <==> [Fe(CN)6]4- PbSO4 + 2 H2O <==> PbO2 + 4 H+ + SO e-

55 CAPACITÉ ET PSEUDOCAPACITÉ
Transfert d’électron à l’interface électrode/électrolyte Cpseudo = 10 to 100 Cdl

56 PSEUDOCAPACITÉ

57 PSEUDOCAPACITÉ

58 MANGANESE DIOXIDE, MnO2 Thin film Composite 0.1 M 5 mV/s

59 CHARGE STORAGE MECHANSIM FOR MANGANESE DIOXIDE
Mn4+/3+ MnO H e- <=====> MnOOH MnO C e- <=====> MnOOC Mn = no change (MnO2)surface + C+ + e- <=====> (MnO2-C+) surface CHARGE STORAGE-CRISTALINITY

60 THIN ‘’FILM’’ ELECTRODE XPS-Mn 3s
Pt/MnO2 Mn(III) Na2SO4 0.1 M Mn(IV) Toupin, Brousse and Bélanger, Chem. Mat. 2004, 16, 3184.

61 STRUCTURE-CAPACITANCE RELATIONSHIP
CAPACITANCE vs. SURFACE AREA for Manganese Dioxide Brousse et al. J. Electrochem. Soc. 2006, 153, A2171.

62 Capacitive behaviour of MnO2
0.1M Na2SO4 - 2 mV/s MnO2/PTFE/AB/graphite (forte polarisation en absence de carbone) Fenêtre électrochimique  0,9-1V Capacité ~ 150 F/g qcharge/qdécharge100 % (bonne réversibilité des processus électrochimiques)

63 MAXIMIZE UTILIZATION C+= Li+, Na+, K+, H+ Mn4+ Mn3+ MnO2 C Binder e-
Low ionic conductivity Low electronic conductivity Increase ionic conductivity Increase electronic conductivity Carbon MnO2 Binder

64 ELECTROCHEMICAL UTILIZATION OF MnO2
Mass of MnO2 (mg/cm2) Electrode thickness (µm) Qcv/Qtheo 3 281 12.9 15-16 290 13.0 30-34 555 12.2 45 596 12.5

65 POLYMÈRES CONDUCTEURS

66 Electrochemistry of conducting polymers
p-doping p-dedoping - + -e- Solution p-dedoping n-doping - +e- + Polymer

67 POLYTHIOPHENE DERIVATIVE
-0.008 -0.006 -0.004 -0.002 0.002 0.004 0.006 0.008 -2.5 -2 -1.5 -1 -0.5 0.5 1 Current (A) Potential (V/(Ag/Ag + )) P- n-doping n-undoping + Et4N+ P p-doping p-undoping BF4- P+

68 GALVANOSTATIC CHARGE/DISCHARGE CYCLING
PFPT/PFPT Cut-off voltages: 1.6 to 2.8 ; 3.0 and 3.2 V ICh = IDch = 2 mA/cm2 in 1 M Et4NBF4/ACN DE Potentiel de cellule (V) Courant (A) DE’ Temps (s) Potentiel (V vs. Ag/Ag+)

69 MODE DE FONCTIONNEMENT Cellule symétrique Cellule asymétrique

70 SYSTÈME SYMÉTRIQUE NÉGATIVE POSITIVE

71 CARBON-BASED ELECTROCHEMICAL CAPACITORS
Potential Current Charge

72 CARBON-BASED ELECTROCHEMICAL CAPACITORS
Voltammetric Charge = QCV Potential Current Discharge

73 CARBON-BASED ELECTROCHEMICAL CAPACITORS
QCV (ox) Potential Current QCV (red) Voltammetric charge = QCV

74 50% of the carbon is unemployed!

75 50% of the carbon is unemployed!
Qdischarge (-) = 0.5 QCV (ox) Qdischarge (+) = 0.5 QCV (red)

76 (weight of both electrodes)
CAPACITANCE OF A CELL Single electrode capacitance C+ = C- = F/g Capacitance of a cell (weight of both electrodes) 25 F/g

77 CARBON/CARBON NON-AQUEOUS ELECTROLYTE AQUEOUS ELECTROLYTE
CELL VOLTAGE = 3 V AQUEOUS ELECTROLYTE -CELL VOLTAGE = 1 V Can an electrochemical capacitor have a cell potential > 1 V?

78 SYSTÈME HYBRIDE

79 CARBON/MnO2 J. Long, D. Bélanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes MRS Bulletin, 2011, 36, 523

80 SYSTÈME HYBRIDE Carbone/MnO2 MnO2/MnO2

81 CARBON/MnO2

82 CHARGE/DISCHARGE CURVES
Carbon/MnO2 MnO2/MnO2

83 Symétrique vs Asymétrique- Effet du potentiel de cellule

84 SYSTÈME CARBONE/OXYDE DE PLOMB ÉLECTROLYTE: ACIDE SULFURIQUE
C/H2SO4/PbO2


Télécharger ppt "SUPERCAPACITÉS ÉLECTROCHIMIQUES"

Présentations similaires


Annonces Google