La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Modèles d’attraction spatiale

Présentations similaires


Présentation au sujet: "Modèles d’attraction spatiale"— Transcription de la présentation:

1 Modèles d’attraction spatiale

2 Objectifs Prendre en compte l’effet de l’espace sur les comportements
Application à l’estimation du potentiel d’un magasin Attraction réalisée sur le potentiel d’une zone géographique Intensité de la concurrence dépend de la proximité géographique

3 Démarche de modélisation
Modèle : Valeur ou Utilité =f (Bénéfices, Coûts) Coûts = déplacement (temps, dépense, distance) selon le mode Bénéfices = valeur hédonique, utilitaire, sociale Selon le motif : information, achat, butinage, sortie familiale Étudier les caractéristiques de l’achat Fréquence d’achat, recherche de variété,… « zoner » : définir l’unité géographique de base : ville, commune, iris,… Définir les magasins potentiels et leurs caractéristiques Calculer les distances zone-magasin (temps, distance,…) Mesurer les flux de visites Modéliser les comportements et calculer les sensibilités aux différentes variables magasin Utiliser le modèle Etudier les écarts, simuler des implantations

4 Modèle d’attraction Part de marché mi = Ai / ( Sj Aj)
A = Fonction d’attraction multiplicative : Ai = b0 Pi b1 (modèle MCI) exponentielle : Ai = exp (b0+ S bi Pi) (modèle logistique) Technique Linéarisation ? Ratio à une marque de référence Pour celle-ci, ratio à la Moyenne géométrique des valeurs Hypothèse de l’indépendance des alternatives non pertinentes (IIA) ou concurrence proportionnelle Contournement de cette hypothèse par : (1) probit, (2) modélisation des relations entre les marques

5 Loi de REILLY (1929) L’intensité de la concurrence est déterminée par l’inverse de la distance (en puissance) Loi de gravitation du commerce de détail (Loi de Newton) "Si 2 pôles (i et j) en compétition sont également accessibles et (également ) performants, toutes choses égales par ailleurs, ces centres attirent les achats des populations situées entre eux en raison directe du nombre d'habitants (P) et en raison inverse du carré des distances qu'il faut parcourir pour s'y rendre,  (D). Aij = a (Pi) / Dij b Les flux diminuent en fonction du carré de la distance (modèle de base b = 2) L'exposant b varie (de 0.4 à 3.3) selon le degré de fluidité des échanges, Il est plus élevé pour les grandes villes

6 Illustration Loi de REILLY

7 CONVERSE (1949) Converse P. D
CONVERSE (1949) Converse P.D. (1949), New laws of retail gravitation, Journal of Marketing, 14, Recherche des points de rupture des zones de chalandise Point de partage entre zones d'attraction pas de graduation de l'emprise approximatif, rapide, marchait bien pour une civilisation rurale Variables « plancher commercial » plutôt que population « temps de trajet » plutôt que distance

8 Modèle gravitaire HUFF HUFF D. L
Modèle gravitaire HUFF HUFF D. L. (1964) Defining and Estimating a Trading Area, Journal of Marketing, Vol 28, p. 38. Elaboration du modèle du point de vue de la demande (à un point « i ») Une approche probabiliste : possibilité de fréquenter plusieurs magasins (« j ») Probabilité de fréquentation de j par un client potentiel habitant en i est égale à l’utilité relative de ce magasin sur la somme des utilités des magasins qui sont considérés = Uij / Sn Uik « Utilité » d’un point de vente « j » : Uij = Sj /(Tij)b Utilité : S, taille du magasin (en m2) T, temps d’accès b, pondération du temps d’accès selon le type de produit considéré n, ensemble des magasins considérés à partir de la zone « i »

9 Modèle gravitaire de HUFF Illustration

10 Généralisation MCI, MICS M. Nakanishi, L. G
Généralisation MCI, MICS M.Nakanishi, L.G. Cooper, Simplified Estimation Procedures for MCI Models ,Marketing Science, Vol. 1, No. 3 (Summer, 1982), pp Modèle à interaction concurrentielle multiple (subjective) Généralisation de Huff pour contourner ses limites Modèle différent par catégorie de biens, Homogénéité des produits vendus, Autres variables explicatives de la fréquentation « Attraction » d’un point de vente « j » : Aij = Pk Xijk ak Probabilité de fréquentation P= Aij / Sn Aik n magasins considérés, k variables considérées X : variable Distance (km, temps), parking, taille magasin, Image du magasin, prix, … Objective ou subjective a coefficient de sensibilité de l’attraction à la variable Méthode d’estimation simple (régression linéaire) des coefficients des variables

11 Méthodologie Définition des zones
Détermination du potentiel des zones (habitants, revenus,…) Identification des concurrents Caractéristiques des concurrents (taille, service, image, horaires, parking,…) Pour chaque zone, collecte des parts de visites sur chaque magasin Estimation des coefficients des variables pour reconstituer les parts de visite Hypothèses sur les paniers Utilisation en simulation de valeur d’emplacements

12 Avantages & Inconvénients
+ Prise en compte de la concurrence Mais avec l’hypothèse IIA - Valeurs subjectives plus qu’objectives Même pour la distance Hypothèse de continuité ? Si barrière naturelle, organisation historique de la ville,… Collecte de données assez lourde Voies de recherche En 2 étapes : distances d’abord et valeur magasin en résidu Puis Explication de la valeur du magasin par des variables d’action


Télécharger ppt "Modèles d’attraction spatiale"

Présentations similaires


Annonces Google