La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Cours de Physiologie Respiratoire

Présentations similaires


Présentation au sujet: "Cours de Physiologie Respiratoire"— Transcription de la présentation:

1 Cours de Physiologie Respiratoire
PCEM2 Fabrice Wallois

2 Chapitre II: La ventilation Pulmonaire Globale
I Volume et capacités pulmonaires La spirographie Les différents types de volumes Les volumes mobilisables Le volume résiduel non mobilisable Les capacités pulmonaires Mesures des volumes non mobilisable La spirographie par dilution à l'hélium La Pléthysmographie corps entier II Les débits ventilatoires Débits expiratoires moyens par spirometrie VEMS DEMM (25-75)Débit expiratoire maximal médian (petites obstructions sur CV normal) Débits expiratoires maximaux instantanés III Les syndromes obstructifs et restrictifs IV La mécanique ventilatoire Compliance et élasticité pulmonaire Elasticité de l'ensemble thorax poumon V Les pressions Les pressions dans le système ventilatoire Les pressions au cours du cycle ventilatoire VI Les résistances du système ventilatoire Définitions Méthodes d'analyse Facteurs faisant varier les résistances des voies aeriennes Compression dynamique des voies aeriennes

3 Volumes et Capacités Spirographe

4 Volumes et Capacités Spirographe
Les volumes mobilisables sont mesurés soit par spirographie (spirographes sec ou à eau comportant une cloche dont le mouvement est enregistré sur un cylindre) soit par intégration du signal de débit aérien obtenu par un pneumotachographe. VR et CRF sont des volumes non mobilisables (voir plus loin)

5 Chapitre II: La ventilation Pulmonaire Globale
I Volume et capacités pulmonaires La spirographie Les différents types de volumes Les volumes mobilisables Le volume résiduel non mobilisable Les capacités pulmonaires Mesures des volumes non mobilisable La spirographie par dilution à l'hélium La Pléthysmographie corps entier II Les débits ventilatoires Débits expiratoires moyens par spirometrie VEMS DEMM (25-75)Débit expiratoire maximal médian (petites obstructions sur CV normal) Débits expiratoires maximaux instantanés III Les syndromes obstructifs et restrictifs IV La mécanique ventilatoire Compliance et élasticité pulmonaire Elasticité de l'ensemble thorax poumon V Les pressions Les pressions dans le système ventilatoire Les pressions au cours du cycle ventilatoire VI Les résistances du système ventilatoire Définitions Méthodes d'analyse Facteurs faisant varier les résistances des voies aeriennes Compression dynamique des voies aeriennes

6 Evaluation des volumes non mobilisables.

7 Mesure du volume résiduel par la dilution à l'Hélium

8 Mesure du volume résiduel par la Pléthysmographie

9 La mesure des volumes non mobilisables nécessite la mise en oeuvre d'autres méthodes : analyse de la dilution d'un gaz inerte (hélium) ou pléthysmographie corporelle ; le pléthysmographe est un caisson étanche qui sert à mesurer les variations du volume thoracique du sujet qu'on y enferme ; celles-ci induisent des modifications de pression dans le caisson, mesurées par un capteur de pression ou par le débit gazeux qu’elles engendrent, qui permettent de déterminer le volume gazeux intrathoracique. En pratique, ces deux techniques mesurent la CRF à partir de laquelle on peut calculer le VR (CRF - VRE) et la CPT (VR + CV).

10 Chapitre II: La ventilation Pulmonaire Globale
I Volume et capacités pulmonaires La spirographie Les différents types de volumes Les volumes mobilisables Le volume résiduel non mobilisable Les capacités pulmonaires Mesures des volumes non mobilisable La spirographie par dilution à l'hélium La Pléthysmographie corps entier II Les débits ventilatoires Débits expiratoires moyens par spirometrie VEMS DEMM (25-75)Débit expiratoire maximal médian (petites obstructions sur CV normal) Débits expiratoires maximaux instantanés III Les syndromes obstructifs et restrictifs IV La mécanique ventilatoire Compliance et élasticité pulmonaire Elasticité de l'ensemble thorax poumon V Les pressions Les pressions dans le système ventilatoire Les pressions au cours du cycle ventilatoire VI Les résistances du système ventilatoire Définitions Méthodes d'analyse Facteurs faisant varier les résistances des voies aeriennes Compression dynamique des voies aeriennes

11 CVF Tiffenau = VEMS/CVI on peut aussi utiliser la CVE ou la CVF

12 Mesure de la DEM 25/75

13 Chapitre II: La ventilation Pulmonaire Globale
I Volume et capacités pulmonaires La spirographie Les différents types de volumes Les volumes mobilisables Le volume résiduel non mobilisable Les capacités pulmonaires Mesures des volumes non mobilisable La spirographie par dilution à l'hélium La Pléthysmographie corps entier II Les débits ventilatoires Débits expiratoires moyens pas spirométrie VEMS DEMM (25-75)Débit expiratoire maximal médian (petites obstructions sur CV normal) Débits expiratoires maximaux instantanés Le pneumotachographe DEP, DIP DEM 25-75 III Les syndromes obstructifs et restrictifs IV La mécanique ventilatoire Compliance et élasticité pulmonaire Elasticité de l'ensemble thorax poumon V Les pressions Les pressions dans le système ventilatoire Les pressions au cours du cycle ventilatoire VI Les résistances du système ventilatoire Définitions Méthodes d'analyse Facteurs faisant varier les résistances des voies aeriennes Compression dynamique des voies aeriennes

14 Chapitre II: La ventilation Pulmonaire Globale
I Volume et capacités pulmonaires Définitions Les volumes mobilisables Le volume résiduel non mobilisable Les capacités pulmonaires Mesures des volumes et capacités pulmonaires Les appareils Les mesures Les résultats II Les débits ventilatoires Débits instantanés Débits moyens III Les syndromes obstructifs et restrictifs IV La mécanique ventilatoire Compliance et élasticité pulmonaire Elasticité de l'ensemble thorax poumon V Les pressions Les pressions dans le système ventilatoire Les pressions au cours du cycle ventilatoire VI Les résistances du système ventilatoire Méthodes d'analyse Facteurs faisant varier les résistances des voies aeriennes Compression dynamique des voies aeriennes

15 www.splf.org/bbo/revues-articles/RMR/ accesLibre/RecoEFRvf_ed2002.pdf
Allures des courbes débit/volume dans les syndromes obstructifs et restrictifs

16 Allures des courbes débit/volume dans les syndromes obstructifs et restrictifs

17 Allures des courbes débit/volume dans les syndromes obstructifs et restrictifs

18 Chapitre II: La ventilation Pulmonaire Globale
I Volume et capacités pulmonaires Définitions Les volumes mobilisables Le volume résiduel non mobilisable Les capacités pulmonaires Mesures des volumes et capacités pulmonaires Les appareils Les mesures Les résultats II Les débits ventilatoires Débits instantanés Débits moyens III Les syndromes obstructifs et restrictifs IV La mécanique ventilatoire Les forces Compliance et élasticité pulmonaire Elasticité de l'ensemble thorax poumon V Les pressions Les pressions dans le système ventilatoire Les pressions au cours du cycle ventilatoire VI Les résistances du système ventilatoire Méthodes d'analyse Facteurs faisant varier les résistances des voies aeriennes Compression dynamique des voies aeriennes

19 Fin Expi Fin Insp Tendance à la distention Tendance à la rétraction Forces s’exerçant sur le poumon et la plèvre à différents moments du cycle respiratoire

20 Equation du mouvement de Newton
P tot= (E tot*V)+(R tot*Dv/Dt)+(I tot*D2V/Dt2) P tot = pression totale appliquée au système = pression motrice faisant entrer l’air dans les poumons V=Volume E=Elastance R=Résistance I=Inertie(négligeable dans le système respiratoire sains) Dv/Dt=Débit En conditions statiques P tot= E*V La compliance C=1/E C=DV/DP

21 Compliance pulmonaire
Mesure de la courbe pression volume d’un poumon isolé

22 La compliance c’est DV/DP

23 La compliance c’est DV/DP

24 La compliance c’est DV/DP

25 La compliance c’est DV/DP

26 La compliance c’est DV/DP

27 La compliance c’est DV/DP

28 L’hystérésis est du au surfactant qui est un film de protéines situé sur les alvéoles ralentissant l’affaissement du poumon pendant l’expiration. La solution salée diminue les tensions superficielles comme le surfactant et permet d’améliorer la compliance pulmonaire diminuant ainsi le travail nécessaire

29 Rôle du surfactant

30 Liquide-liquide Air-liquide La tension superficielle est la force qui s’exerce sur une ligne imaginaire de 1cm de long dans la surface d’un liquide En fait les forces d’attraction liquide-liquide sont plus forte que les forces d’attraction liquide-gaz. Dans une bulle de savon la tension superficielle induit une tendance à la rétraction qui suit la loi de Laplace: P (pression résultante)= 2T/r La pression résultante est donc + forte pour les petites alvéolesquand r diminue Le surfactant interviens pour diminuer cette tension superficielle La couche de surfactant est plus importante dans les petites alvéoles que dans les grandes

31 Liquide-liquide Air-liquide La couche de surfactant est plus importante dans les petites alvéoles que dans les grandes Le surfactant est secrété par les pneumocytes alvéolaires de type II Les 3 fonctions du surfactant: Le surfactant évite que les petites alvéoles se vident dans les grandes Le surfactant maintiens les alvéoles au sec en réduisant la transsudation du liquide dans la lumière alvéolaire Le surfactant facilite la compliance pulmonaire

32 la compliance pulmonaire évalue l’élasticité du poumon seul:
On mesure la ddP entre l’œsophage(=à celle de la plèvre) et la bouche. Poesophagienne - Pbouche = Ppleurale - Pbouche = Ptranspulmonaire la compliance thoraco-pulmonaire évalue l'élasticité de l'ensemble thorax poumon. Elle est obtenue en mesurant la différence de pression entre la bouche(= à celle du poumon) et l’air ambiant. Pbouche - Pextérieur

33 Cnstruction de la courbe de l’élasticité de l’ensemble thorax poumon
Rétraction Distension CV CRF VR Pression mmHg Forces thoraciques Forces pulmonaires Forces thoraco-pulmonaires résultantes Cnstruction de la courbe de l’élasticité de l’ensemble thorax poumon

34 Rétraction Distension CV CRF VR Pression mmHg -30 -20 -10 0 10 20 30
Forces thoraciques Forces pulmonaires Forces thoraco-pulmonaires résultantes

35 Rétraction Distension CV CRF VR -30 -20 -10 0 10 20 30 Pression mmHg
Pression mmHg Forces thoraciques Forces pulmonaires Forces thoraco-pulmonaires résultantes

36 Rétraction Distension CV CRF VR -30 -20 -10 0 10 20 30 Pression mmHg
Pression mmHg Forces thoraciques Forces pulmonaires Forces thoraco-pulmonaires résultantes

37 Rétraction Distension CV CRF VR -30 -20 -10 0 10 20 30 Pression mmHg
Pression mmHg Forces thoraciques Forces pulmonaires Forces thoraco-pulmonaires résultantes

38 Rétraction Distension CV CRF VR -30 -20 -10 0 10 20 30 Pression mmHg
Pression mmHg Forces thoraciques Forces pulmonaires Forces thoraco-pulmonaires résultantes

39 Rétraction Distension CV CRF -30 -20 -10 0 10 20 30 Pression mmHg
Pression mmHg Forces thoraciques Forces pulmonaires Forces thoraco-pulmonaires résultantes

40 Chapitre II: La ventilation Pulmonaire Globale
I Volume et capacités pulmonaires Définitions Les volumes mobilisables Le volume résiduel non mobilisable Les capacités pulmonaires Mesures des volumes et capacités pulmonaires Les appareils Les mesures Les résultats II Les débits ventilatoires Débits instantanés Débits moyens III Les syndromes obstructifs et restrictifs IV La mécanique ventilatoire Compliance et élasticité pulmonaire Elasticité de l'ensemble thorax poumon V Les pressions Les pressions dans le système ventilatoire Les pressions au cours du cycle ventilatoire VI Les résistances du système ventilatoire Méthodes d'analyse Facteurs faisant varier les résistances des voies aeriennes Compression dynamique des voies aeriennes

41 Les pressions dans le système ventilatoire

42 Les pressions dans le système ventilatoire
Prs: P trans thoraco pulmonaire Pw: P trans thoracique Ppl: P trans pulmonaire PA : P alvéoliare PB : P Barométrique Ppl : P Pleurale ou intrapleurale Pes : P Oesophagienne

43 Le pneumothorax P= -5mmHg Au repos, tendance du poumon à s’affaisser
Et du thorax à ce distendre = P intrapleurale=-5mmHg P= 0 mmHg En cas de pneumothorax il n’y a plus de différence de pression le poumon s’affaisse complètement et le thorax se distend complètement jusqu’à équilibre

44 Différences régionales de ventilation
Les régions les plus basses sont les plus ventilés -10 mmHG Pression liée à l’apesanteur plus basse à l’apex qu’à la base -2 mmHg Donc la base du poumon est relativement comprimé

45 Différences régionales de ventilation
Les réions les plus basses sont les plus ventilés -10 mmHG -compliant Pression liée à l’apesanteur plus basse à l’apex qu’à la base + compliant -2 mmHg Donc la base du poumon est relativement comprimé Donc la base du poumons se distend relativement plus facilement à l’inspiration car plus compliante

46 Chapitre II: La ventilation Pulmonaire Globale
I Volume et capacités pulmonaires Définitions Les volumes mobilisables Le volume résiduel non mobilisable Les capacités pulmonaires Mesures des volumes et capacités pulmonaires Les appareils Les mesures Les résultats II Les débits ventilatoires Débits instantanés Débits moyens III Les syndromes obstructifs et restrictifs IV La mécanique ventilatoire Compliance et élasticité pulmonaire Elasticité de l'ensemble thorax poumon V Les pressions Les pressions dans le système ventilatoire Les pressions au cours du cycle ventilatoire VI Les résistances du système ventilatoire Méthodes d'analyse Facteurs faisant varier les résistances des voies aeriennes Compression dynamique des voies aeriennes

47 Variation des pressions au cours du cycle ventilatoire
Si il n’y avait pas de resistance des voies aériennes, la pression alvéolaire resterait nulle et la pression intrapleurales suivrait la ligne en pointillé ABC qui est déterminé par la rétraction élastique du poumon. La partie hachurée de la pression intrapleurale représente la contribution des voies aériennes et des tissus

48 Chapitre II: La ventilation Pulmonaire Globale
I Volume et capacités pulmonaires Définitions Les volumes mobilisables Le volume résiduel non mobilisable Les capacités pulmonaires Mesures des volumes et capacités pulmonaires Les appareils Les mesures Les résultats II Les débits ventilatoires Débits instantanés Débits moyens III Les syndromes obstructifs et restrictifs IV La mécanique ventilatoire Compliance et élasticité pulmonaire Elasticité de l'ensemble thorax poumon V Les pressions Les pressions dans le système ventilatoire Les pressions au cours du cycle ventilatoire VI Les résistances du système ventilatoire Méthodes d'analyse Facteurs faisant varier les résistances des voies aeriennes Compression dynamique des voies aeriennes

49 or R la résistance au flux = DP/V° Donc R=8hl/ pr4 h= viscosité
Flux turbulent Flux laminaire DP=V°2 V°2=DP(pr4/8hl) DP=KV° V°=DP(pr4/8hl) or R la résistance au flux = DP/V° Donc R=8hl/ pr4 h= viscosité r = rayon l = longueur Ainsi Les résistances augmentent quand: la viscosité et la longueur augmente et quand le rayon diminue

50 DP=KV°2 DP=KV° V°2=DP(pr4/8hl) V°=DP(pr4/8hl) DP=K1V°+K2V°2
Flux turbulent Flux laminaire DP=KV°2 V°2=DP(pr4/8hl) DP=KV° V°=DP(pr4/8hl) En pratique dans l’arbre trachéobronchique on considère un flux transitionnel DP=K1V°+K2V°2

51 Ainsi Les résistances augmentent quand:
la viscosité et la longueur augmente et quand le rayon diminue On pourrait donc penser que les résistances sont plus importante dans les petites voies aériennes

52 Ainsi Les résistances augmentent quand:
la viscosité et la longueur augmente et quand le rayon diminue On pourrait donc penser que les résistances sont plus importante dans les petites voies aériennes

53 Ainsi Les résistances augmentent quand:
la viscosité et la longueur augmente et quand le rayon diminue Oui mais la surface totale des petites voies aériennes est très grande

54 Ccl: Les mesures de résistances de voies aérienne peuvent ne détecter que très tardivement les atteintes de ces petites voies aériennes qui ne contribuent que très peu à la résistance totale des voies aériennes

55 Compression dynamique des voies aériennes
Volume Débit Quelque soit les modalités d’exsuflation, la pente de la courbe expiratoire est très similaire. Il existe donc un facteur limitant le débit expiratoire d’origine mécanique indépendamment de l’effort effectué.

56 Début inspiration Pré inspiration Volume -1 Débit +5 +6 -2 -5 -7 Expiration forcée Fin Inspi -11 +8 +19 +38 +30 -8

57 Volume Volume Débit Débit La limitation du débit peur être accentuée par: - l’augmentation de la résistance des voies aériennes périphériques qui va diminuer la pression intrabronchique donc la pression transmurale augmente limitant encore plus le débit Expiration forcée Expiration forcée -11 -20 +19 +10 +38 +38 +30 +30


Télécharger ppt "Cours de Physiologie Respiratoire"

Présentations similaires


Annonces Google