La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Energy from Biomass by Ghislain Gosse (Inra)

Présentations similaires


Présentation au sujet: "A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Energy from Biomass by Ghislain Gosse (Inra)"— Transcription de la présentation:

1 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Energy from Biomass by Ghislain Gosse (Inra)

2 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1.Biomass, what is it? 2.Why and how using biomass today? 3.Biomass, for which use (process, end products)? 4.Biomass, potential and availability? (yield, quality, logistics) 5.Biomass and land use (Food, Feed and Fuel) 6.Biomass and environment

3 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1-Biomass, what is it?

4 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1.Biomass, what is it? Photosynthesis is the basic (the only one) process as a source of renewable carbon CO 2 + H 2 O C 6 H 12 O 6 + O 2 Solar Radiation (400-700nm) C3 and C4 photosynthesis process

5 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1.Biomass, what is it? Factors affecting the leaf photosynthesis 1.Radiation 2.Temperature 3.CO2 concentration 4.Water status 5.Crop phenology

6 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1.Biomass, what is it? Radiation (Photons/m2/s) Photosynthèse (mg/m2/s) A response to radiation limited at high level of radiation

7 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Carbon dioxide, a benefit effect Plante en C3 (blé) Plante en C4 (maïs) 350 700 [CO2] Photosynthèse 1.Biomass, what is it?

8 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Temperature Température Zones with high risk or low performance Biological reaction 1.Biomass, what is it?

9 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1.Biomass, what is it? From the leaf to the crop photosynthesis A crop is a set of solar sensors characterised by their : - efficiency Eb - area versus time ie LAI - spatial distribution (crop geometry) The concept of intercepted radiation and dry matter production

10 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1.Biomass, what is it? Crop productivity and radiation use efficiency DM Sum of (PAR x Ei) Ei LAI C4 crops C3 crops

11 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1.Biomass, what is it? Biomass productivity and potential at different space scale -at the world level (cf Faaj, Griffon and IIASA models) -at the EU, national level, - at the supply area level

12 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A potential limited by the main soil and climate constraints 1.Biomass, what is it?

13 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A potential limited also by the duration of the growing period 1.Biomass, what is it?

14 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T NeedsYields (tep/ha) Area needed (10 9 ha) Area possible Production (Mtep) Shortage/ surplus (Mtep) North Am. & EU. 2080±40021040±200150300-1800 Japan540±602270±3000-540 Russia Oce.1290±1301 150 -1140 Latin Am.130±50526±10261300 Africa240±90460±20602400 India300±1102150±5000-300 China300±1102150±5000-300 Others Asia230±80460±2025100-130 TotalWorld5080±1080////-4580 Energy from biomass. Production capacities (Mtep and 10 9 ha) From Iiasa and CNRS scenarios in B. Dessus 2003 1.Biomass, what is it?

15 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Overall picture 2050 (from A.Faaj 2007) 1 Gha = 10 9 ha 1 EJ = 10 18 Joules (1 EJ = 23.8 x 10 6 TOE) 1.Biomass, what is it?

16 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Biomass availability at the supply area level Forest biomassBiomass from agriculture 1.Biomass, what is it?

17 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1.Biomass, what is it? Carbone cycle at the preindustrial period (1800) Atmosphere 575 Soil 3 000 Fossil carbon 1 000 Ocean 39 000 Sediments 62 000 000 Photosynthesis 60 Respiration 60 Physical and chemical diffusion Stocks and fluxes in Gt of Carbone ( 1 G t = 10 9 t) 100

18 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1.Biomass, what is it? Carbon cycle today (2008) Stock and fluxes in Gt of Carbone ( 1 G t = 10 9 t) Atmosphere 700 + 3.3 Soil 3 000 Fossil carbon 1 000 Ocean 39 000 Sediments 62 000 000 60 Physical and chemical diffusion 100 Deforestation Combustion of fossil fuel 2 1.6 6

19 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Biomass and climate change Some key-questions 1.Biomass, what is it? 1.Effect of increase in temperature is perhaps in favour of biomass 2.Increase in CO2 concentration is a benefit for biomass especially with C3 crops 3.Reduction of rainfall and uncertainty in its time distribution is a bottleneck for biomass 4.Change in land use and carbon (de-)sequestration is a important question for biomass 5.Uncertainty about deseases and pest, perhaps a higher pressure on crops

20 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 2-Why and how using biomass today?

21 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Some reminds concerning recent history At the end of the XX ieth century, biofuels have been introduced as a management of agricultural policy : - Regulation of sugar market in Brasil with the Proalcohol programme - Measures of application in the reform of CAP in 1992 at the EU level These decisions have been driven by agriculture policy 2-Why and how using biomass today?

22 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Today, new considerations, new approach -Reduction of the greenhouse gases emisssions in relationship with climate change - Scarcity and high price of fossil carbon, especially oil Consequences : - Biofuels, bioenergy are now a component of the energy panel et the national, world level - their performance have to be evaluated with new criteria 2-Why and how using biomass today?

23 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Renewable energy and biomass Use of Renewable Energy has to be considered as a complement of an efficient energy saving policy!! Among the RENs, Biomass has a specific status: - Source of energy vector - Source of chemical carbone molecules - Source of food, feed 2-Why and how using biomass today?

24 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Food-Fuel, a challenge for the XXI th century time Population 2040-2060 9-10 billions Critical period for oil Land availability will be a key criteria 2-Why and how using biomass today?

25 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Overall picture 2050 (from A.Faaj 2007) 1 Gha = 10 9 ha 1 EJ = 10 18 Joules (1 EJ = 23.8 x 10 6 TOE) 2-Why and how using biomass today?

26 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Two challenges : 1-How to reduce greenhouse gas emissions 2-How to propose solutions to carbon fossil utilisation? Two major consequences : 1- How to produce biomass with a minimum, pressure on food market 2-How to produce a huge amount of renewable carbon in a sustainable way? What we have to solve!! 2-Why and how using biomass today?

27 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Classical agriculture Food/Feed Byproducts Dedicated agriculture Byproducts Classical agriculture Food and non food Byproducts Agriculture… 1992 Agriculture 1992-2005… Agriculture… tomorrow, An other mission Non Food Food/Feed The new challenge for agriculture 2-Why and how using biomass today?

28 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 3-Biomass, for which use (process, end products)?

29 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Key bioenergy utilisation routes 3-Biomass, for which use (process, end products)?

30 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Liquid biofuels - Ethanol (sugar cane, wheat, corn, sugar beet, cassava…) - Ethanol from lignocellulose (2 nd generation) - Oil and ester of oil crop (rape, soya, palm, sunflower, jatropha…)

31 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Liquid biofuels, first generation

32 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Alternative fuels today Consommation mondiale d'énergie (1.7 Gtep) dans le secteur des transports en 2006 49,5 MTEP En 2005, au niveau mondial, le secteur transport : -dépend du pétrole à 97% -représente plus de 50 % de la consommation de pétrole

33 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Am. sud (Brésil) Am. Nord (Etats-Unis) Asie Production mondiale d'éthanol carburant en 2006 : 31,3 Mt Production mondiale d'EMHV en 2006 ~ 6 Mt. France Allemagne Italie Autres Europe Europe Autres États-unis Brésil Autres World production of biofuels

34 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Lignine 10-30% Hemicellulose 20-40% Cellulose 40-60% Les polymères pariétaux de la biomasse lignocellulosique

35 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Second generation biofuels (G2) 1 t de M.S. ~ 0,2 tep

36 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T From the utilisation of the starch, sugars to the whole utilisation of the storage organ (grain, tubers…), …on the way of the biorefinery, To the use of the whole crop with one common factor, How to produce, to use this lignocellulosic raw material? Lignocellulose is the most ubiquist biomass feedstock at the world level, at the regional level. From Agriculture to Forestry ressources through biological Urban wastes Lignocellulose, the challenge for the future

37 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Thermochemical process -Combustion -Gazeification - Pyrolysis -Gazeification and Fosher-tropsch

38 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Energy content of lignocellulose versus fossil fuel (PCI) Energy content of 1 kg H2 is 14 more than 1 kg of dry wood

39 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Lignocellulosic biomass compared to fossil fuels

40 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Thermochemical process from biomass Biomasse solide Cultures énergétiques Résidus forestiers & agricoles Déchets Combustion Pyrolyse HT Pyrolyse rapide Gaz combustible Gaz de synthèse Vapeur Chaleur Electricité Hydrogène Méthanol DME Liquides F-T ------------------------- Carburants, Produits pétroliers Gazéification Conversion Hydrothermale Bio-oil Biocrude

41 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Energy efficiency of the different process

42 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Bottlenecks of thermochemical process Conditionning: Drying due to high water content Granulometry (performance and cost)  Biomass: quality is variable from species, pedoclimatic conditions, with a low energy content  Preconditionning steps, energy densification is necessary (Torrefaction, pyrolysise : flash/liquid, slow/solid) with a high cost Gaz treatment and cleaning (tars, alcalin, heavy metals…) Synthesis (expérience Renew pb catalysis) Scale up (very large scale, in relationship with fossil fuel reffineries Availability of biomass

43 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Bottlenecks of enzymatic hydrolysis Pretreatment (alcaline or acide solution, wet oxydation, vapour explosion): Limit sugar degradation Maximise separation of lignin, cellulose, hemicellulose Hydrolysis : genie genetic Enzymatic degradation of hémicelluloses require a great variety of enzymes Co gestion of microbes cinetics, Fermentation gestion des inhibitors due to hydrolysis (furanes, phénols…) or coproducts of fermentation, utilisation of pentoses Scale up (size of today ethanol plant, in relationship with agroindustry Availability and quality of biomass

44 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Biomass feedstock and quality Lignocellulose, but which kind of process of conversion? Lignocellulose quality may be adapted, modified by green biotech more easily than productivity Evolution of quality during crop growth and its management Humid or dry biomass, thermochemical or biological process. One key-question for agriculture and related logistics

45 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T A double challenge : - High yield per unit area - Sustainable production, (water consumption, GHG, Biodiversity…) Biomass resources

46 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Cultures annuellesCultures pérennes forestières Résidus de récolte Cultures pérennes agricoles © INRA © AFOCEL© ITEBE© INRA Exemple du sorgho Exemple du miscanthus © INRA/A.Gavalan d Exemple des TCR de peupliers © Bioforêt Exemple des pailles et des plaquettes forestières Lignocellulosic biomass (1)

47 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Coproduits des biocarburants G1 AlguesAgroforesterie Résidus urbains Exemple des photoréacteurs © INRA Exemple des cultures associées peupliers/céréales © Greenfuel Tech Corp © ORTH s.a. © USICA Exemples des cagettes et des palettes © USICA Exemple des pulpes de betterave © Bioprodukte Prof. Steinberg GmbH © Ecologie.gou v Lignocellulosic biomass (2)

48 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Yield/ha gross Extraction ratio Yield/ha net Yield/ha (tep) Sugar cane (trop) 75±t/ha/y10 to 11%7 to 9 t sugar/ha/y 3 to 4 tep/ha/y Oil palm (tropical) 3 to 16t/ha:Y10 to 23%4.1±0.5t oil/ha 2 to 3 tep/ha/y Tropical wood 33m 3 ha/y -0.2tep/m 3 6,6tep/ha/y Wheat (temp) 8.3±0.5t/ha5%0.4t sugar/ha/y 2tep/ha/y Rapeseed (temperate) 3.1±0.1t/ha/y50%1.7t oil/ha/y1 tep/ha/y Energy yields of some crops and forest Given the yields, how much land can each region dedicate to energy production to fill the needs, after having kept enough for food?

49 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T The agricultural biomass feedstock, a learning curve from today to the future Byproducts straw Annual crops C4 perennial crops Short rotation coppice Time Potential

50 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T By products such as straw… are limited in quantity but they exist today in the field. It is the first step for industrial applications Annual crops, an existing solution (triticale, sorghum…) but not the best in term of yield and sustainability, a solution for transition… C4 perennial crops, the best solution in term of productivity and local impact on environment, not yet ready for large scale use A panel of solution in time and space… Why this learning curve? (1)

51 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Why this learning curve? (2) Miscanthus Crop perennity Miscanthus Triticale Interest Insertion in farming system Annual crops Perennial crops Environment Where is the optimum

52 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Source : U.Jorgensen (DIAS) Nitrates leaching under a perennial crop

53 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Biomass feedstock at the industrial supply area Size (200 000 t/y or 5 000 000 t/y), conséquences are completely different Complementarity, synergy with other sources of biomass Impacts on farming systems Impacts on rural development Acceptability by actors of the chain including society

54 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T National, European feedstock versus a World approach A distorted comparison between sugar cane, palm oil… and european raw material (technique, environment, social aspects…) How long the sources of distortion will remain? How long the cost of sea transportation will remain marginal? Technically, environmentally, some european feedstock are competitive

55 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Land use competition, Food or fuel

56 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Bioéthanol, French industrial capacity are suffisant for a local production at 100% Biodiesel, in 2010, French industrial capacity are suffisantbut 12% import of seeds are necessary. In 2015, the French capacity are not sufficient which requires imports of 530 Kt of biodiesel to satisfy the 10% target (kt)2010 (7%)2015 (10%) ProduitsAgrémentCapacitéObjectifCapacités Bioéthanol1 0922 0001 4002 000 Biodiesel3 1785 2804 190? dont France2 7973 660de 2 797 à 3 660 3 660 dont étranger3811 620de 1 393 à 530? Biofuels G1 - industrial potential of production

57 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T G1 - Objectif US 4% et UE 5,75% en 2015 Impact sur céréales et huiles végétales au niveau mondial  Impact fort sur la demande, les échanges, les prix  Hausse des prix et baisse modérée des utilisations alimentaires (céréales, huiles végétales, graines oléagineuses)  Baisse des prix des coproduits, dont tourteaux protéiques  Compatible avec tendance des rendements si augmentation des surfaces en céréales et oléagineux entre 5 et 10% en moyenne  Augmentation contrastée selon les zones, particulièrement forte pour : Amérique du Sud (céréales et soja : +26Mha en Argentine et Brésil) Asie du sud-est (huile de palme) and Canada (colza) Besoin suppl. bio- carburants Besoin suppl. alimentaires Production mondiale 2005 Échanges mondiaux 2005 céréales99 Mt247 Mt2005 Mt126 Mt huiles11 Mt9 Mt112 Mt48 Mt

58 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T G1 - Impact sur les marchés agricoles mondiaux en fonction des objectifs US et UE GrainesHuilesTourteaux BléMaïsColzaSojaColzaSojaColzaSoja 2005 2015 niveaux inchangés objectifs actés US ambitieux UE-25 ambitieux US et UE 25 ambitieux 100 111,8 128,3 130,5 136,2 138,3 100 120,3 129,0 136,0 132,0 140,0 100 106,8 125,7 129,7 152,0 156,0 100 103,6 110,9 113,3 114,0 115,8 100 101,5 130,8 137,7 160,5 167,3 100 89,6 126,1 135,8 145,1 154,3 100 116,1 80,3 71,2 65,2 56,1 100 111,6 101,7 100,0 95,3 93,1 Source : Dronne et al. (2007), modèle OLEOSIM Evolution du prix selon hypothèses bio-carburants en 2015 :

59 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Prix agricoles : 5 déterminants de la hausse - Croissance économique mondiale (pays émergents, transition alimentaire vers lait et produits carnés, demande de céréales pour l’alimentation animale) - Accidents climatiques - Stocks mondiaux faibles - Comportements spéculatifs (nouveau) - Biocarburants (sucre au Brésil, maïs aux US) Prix élevés aujourd’hui dans UE (retard, protection à l’importation) – cf. prix de la viande porcine Demain : ajustement à la baisse, mais les cours devraient rester « soutenus » G1 - Impact sur les marchés agricoles mondiaux en fonction des objectifs US et UE

60 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Draft of Directive Energies Renouvelables –Objectif 20/20/20 Les 4 principaux critères de Développement Durable exigés: 1.Un minimum de 35% de réduction des émissions de GES 2.Les MP nécessaires à la fabrication des Biocarburants ne doivent pas provenir de terres reconnues comme étant de grande valeur en termes de diversité biologiques (base jan. 2008) cf forêt non perturbées par l’homme, zone de protection de la nature, prairies à grande biodiversité 3.Les MP de doivent également pas provenir des zones possédant un stock important de carbone telles que zones humides, tourbières, zones forestières continues 4.Les MP d’origine EU27 doivent avoir été produites dans le respect des règles d’éco-conditionnalité (Annexe III, point A du Reg. CE 182/2003)

61 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Environnemental impacts and Change in land use

62 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T I will insist on : Time and space scale Relation between ecosystems (ex of nitrogen) Optimisation and priority (typologie of land use)

63 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T The key land use Forest (from tropics to the taiga) Permanent pasture and savannas Arable lands (setaside, annual crops and perennial crops) Forest and pasture : a perennial system with a logique of stock Arable land : an annual system with a logique of fluxes Time scale is the key point Kinetics of CO2 destruction and C storage are not univoque

64 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T time Stock of carbone Kinetics of Carbon emission and sequestration Change in land use 10 years Forest Pastures Savannahs Annual cropping Photosynthèse is the unique source of carbone for the soil

65 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Systems with a high carbon stock Forest High stock in aerial biomass Stock of organic matter in soil f(climate) and decreasing from north to south Intensification and sustainability of soils, mainly physical properties Savannas and permanent grassland Stock of organic matter is very important No nitrate leaching to the water table Cropping on savanna (N, Water) is destocking a large amount of carbon

66 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Arable lands Annual crops Low increase in carbon stock due to the improvement of productivity Decreasing in soil tilling improve the carbon stock but increase the use of perszticides and also increase the N2O emisssions. Study case by case

67 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Fertilisers 180 kg Exportation 220 +/- 30 kg Soil Contribution 40 +/- ~ 20 kg Nitrates leaching 0 - 20 kg Gas Emission N 2 O, NH3... 0 – 3 kg Nitrogen compounds : fluxes different from 1 to 100, uncertainties similar to the flux Direct emissions which may become indirect emissions (transfert between air/water

68 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T - Increase the duration and diversify the rotations - Insertion perennial systems à low inputs (mainly nitrogen) as a source of 2 nd generation biofuels - Optimal localisation of perennial crops, notion of multifunctionnality Arable lands

69 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Soil, field, farm belongs to a space with a spatial and functionnal organisation Among the functions : Supply area for agroindustry plants Energy and green chemistry Water basin for food purpose Ecological services Introduction of perennial systems (setaside, lignocellulosic biomass…), an opportunity to take into account some environmental benefit such as landscape, biodiversity, water quality, erosion… A key word : increase the interface between ecosystems

70 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Life Cycle Analysis, towards ecocertification

71 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T L'ACV comme cadre de l'évaluation environnementale Du Champ au réservoir Bilan d'énergie MJ dépensé / MJ carb. distribué Emissions indirectes et consommations APPROVISIONNEMENT EN ENERGIE ET MATIERE A CHAQUE ETAPE : Electricité, Gaz Naturel, Fioul, Intrants agricoles, etc. Usage du carb. Bilans des émissions g emis / MJ carb. distribué Du Réservoir à la Roue Production Transport Distribution Bilans des émissions g emis / km Bilan d'énergie MJ carburant dépensé / km Du Champ à la Roue G1G1 E1 E2 G2G2 Coproduits NB : La fabrication du véhicule n'est généralement pas prise en compte

72 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Impacts globaux vs. impacts locaux Agrégation sur toute la filière –des inventaires de flux –des impacts eux-mêmes Calcul de l'impact à partir des sources Prise en compte de la vulnérabilité des milieux cibles non nécessaire Agrégation sur toute la filière –des inventaires de flux (mais quelle pertinence ?) –impossible pour les impacts eux-mêmes Nécessité de prendre en compte la vulnérabilité des milieux cibles Impacts globauxImpacts locaux Nécessité d'une échelle de description plus fine

73 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Impacts globaux : Consommations d'énergie et intensification de l'effet de serre

74 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Des résultats très variables d'une étude à l'autre Référence essence : Consommation d'énergie : 2,16 MJ/km Émissions de GES : 164 g CO 2 éq /km Source IFEU, 2004 et JEC, 2007

75 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Sources de variations Variations des données d'entrée –Représentativité géogr. et temp., précision,transparence –Usage des sols et culture de référence (N 2 O, rendement...) –Procédés de transformation de référence –Carbone du sol Variations des méthodes d'évaluation –Choix des filières de référence –Prise en compte ou non du véhicule –Construction, démantèlement des infrastructures –Méthodes d'affectation des impacts Émissions de N 2 O Affectation des impacts

76 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Méthodes de calcul des émissions de N 2 O 2 types d'émissions de N 2 O au niveau de l'étape de culture –Émissions directes –Émissions indirectes 3 méthodes de calcul –Mesures sur parcelles –Utilisation de modèles –Approche macroscopique

77 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Exemples de variations des émissions de N 2 O Références ADEME/DIREM, 2002JRC/EUCAR/CONCAWE, 2007 MéthodeSKIBAIPCCDNDC Éthanol de blé Facteur d'émission0,5 %1,25 %1,8 % Apports de N2,7 g/MJ 1,3 g/MJ Émissions de N 2 O6,26 g/MJ15,25 g/MJ5,59 g/MJ Contribution de l'étape agricole au bilan GES 60 %79 %18 % Biodiesel de tournesol Facteur d'émission0,8 %1,25 %2,4 % Apports de N1 g/MJ 0,7 g/MJ Émissions de N 2 O3,6 g/MJ5,7 g/MJ7,1 g/MJ Contribution de l'étape agricole au bilan GES 34 %44 %25 %

78 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Question de l'affectation : Cas de l'éthanol GES Énergie Quelle répartition entre les 2 produits ? Pulpes, Drèches Alimentation animale Énergie

79 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 1 ère méthode d'affectation : Utilisation d'un prorata Prorata massique : affectation selon la masse des produits Prorata énergétique : affectation selon le contenu énergétique des produits Prorata économique : affectation selon la valeur économique des produits (e.g. le prix auquel le producteur peut les vendre) Pulpes, Drèches Alimentation animale Énergie

80 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Avantages et inconvénients des prorata Méthode d'allocation simple Mais... –pertinence : pas toujours de lien entre l'affectation et les impacts respectifs réels des produits et coproduits sur les émissions –pas toujours applicable directement (e.g. coproduction d'électricité et prorata massique) –prorata variable dans le temps (e.g. prorata économique)

81 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T 2 ème méthode d'affectation : Prise en compte des impacts évités Pulpes, Drèches Alimentation animale Tourteaux de soja Alimentation animale Soja Trituration Substitution des coproduits

82 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Avantages et inconvénients de la substitution Méthode d'allocation traduisant au mieux les impacts réels d'une filière –Possibilité de description fine des situations aux échelles locales –Prise en compte des usages réels des coproduits Mais... –Difficile à mettre en oeuvre, du fait du grand nombre de données supplémentaires nécessaires –Variabilité des résultats en fonction de la filière substituée

83 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Life cycle assessment, can we reach a consensus????

84 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Vers une certification des filières biocarburants, -Quelles démarches en cours en Europe ? - Une réduction de 35% des GHG (cf draft de directive EU) - Mais aussi d’autres critères…

85 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T GHG emissions Water BiodiversityAir Soil Socio- economic Different categories of sustainability criteria Cramer (NL)WWF GermanyLowCVP (UK)LCFS (US/Cal.)RSB (Swiss)EC Proposal

86 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Vers un outil de certification des émissions de GES ? Démarches en cours en Europe –Royaume-Uni et Pays-Bas Définition d'une méthode et d'un outil de certification des émissions GES associées aux filières biocarburants Substitution et Prorata économique –Allemagne Outil de certification de la "durabilité" des filières bioénergie Prise en compte des impacts sur la biodiversité, de la déforestation et des émissions de GES Prorata énergétique –Proposition de la Commission Européenne Annexe à la Directive Carburants Méthode de l'étude JEC : Substitution Des préconisations divergentes pour les règles d'affectation !

87 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Quelles démarches en France ? Séminaire IFP/ADEME en mars 2007 –Présentation des travaux passés et en cours –Participants venant d'Europe et des Etats-Unis Étude Française lancée le 1 er octobre 2007 –Étude des biocarburants de 1 ère génération en France –Énergie, GES et autres polluants atmosphériques –Préconisations méthodologiques sur les modes d'allocation –Revue critique pour les changements d'usage des sols –Préconisations sur l'agrégation à l'échelle nationale –Identification des données disponibles et manquantes –Qualification de ces données

88 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Conclusion (1) Biomass availability is the limiting factor and has to be produced in a sustainable way A strategy from now to the future based on scientific background and pragmatism Perennial C4 crops is the ideal target in a panel of solutions to implement according to different socio, pedoclimatic conditions Biomass ressources have to be defined (especially in term of quality) according to the industrial process Biomass requires large scale areas, acceptability and rural development are crucial questions and are f(industrial chains)

89 A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Conclusion (2) Biomass has to be produce in a sustainable way, at the global scale (GHG balance) but also at the local scale (water quality, soil conservation, biodiversity…) Water comsumption and change in land use is very crucial The question of biomass is a question at the world level, with a market at the world level, ecocertification is a way to evaluate the performance of a filiere Organisation of the biomass chains are very crucial for its success Science and research are also very determinant for the success (at the crop level, process level, but also for the systemic approach (economy, environment and sociology…)


Télécharger ppt "A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Energy from Biomass by Ghislain Gosse (Inra)"

Présentations similaires


Annonces Google