Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parAuguste Morel Modifié depuis plus de 8 années
1
Portefeuille obligataire
2
3 sources de rendements : 1.Revenu lié aux coupons 2.Gain (perte) en capital 3.Revenu lié au réinvestissement des coupons 4 facteurs affectent ces différentes sources: 1.Changement dans le niveau des taux d’intérêt 2.Changement dans la forme de la courbe des taux 3.Changement des écarts de taux entre deux ou plusieurs secteurs du marché obligataire 4.Changement des les caractéristiques spécifiques des obligations Ont inspiré différentes stratégies de gestion active de portefeuille obligataire
3
Portefeuille obligataire (stratégies de gestion active) 1.Anticipations des taux d’intérêt futurs (Market timing) Anticipation d’une baisse des taux Anticipation d’une hausse Anticipation de stabilité 2.Basée sur le mouvement des courbes de taux d’intérêt Stratégie Bullet Stratégie Barbell Stratégie Ladder Stratégie Butterfly 3.Basée sur les écarts de taux 4.Basée sur les inefficiences; identification des obligations sous-évaluées (Bond picking) 5.Immunisation (lorsqu’il y a des obligations à rencontrer = sorties de fonds prévues, donc passif)
4
1.Anticipations des taux d’intérêt futurs a)Anticipation d’une baisse des taux On cherche à allonger la durée du portefeuille (si évaluation en fonction d’un indice, durée plus longue que ce dernier) b)Anticipation d’une hausse On cherche à diminuer la durée du portefeuille (durée plus courte que celle de l’indice) c)Anticipation de stabilité À appliquer lorsque structure à terme croissante et anticipation de sa stabilité Modification de la durée du portefeuille par : Swap d’anticipation de taux Utilisation de contrats à terme sur taux d’intérêt Portefeuille obligataire (stratégies de gestion active)
5
2. Basée sur le mouvement des courbes de taux d’intérêt a)Stratégies Bullet Composer le portefeuille avec des obligations dont les échéances sont fortement concentrées en un point de la structure à terme des taux d’intérêt (Ex.: 60% d’obligations d’échéance 10 ans, 20% d’échéance 9 ans et 20% d’échéance 11 ans) b)Stratégie Barbell Composer le portefeuille avec des obligations dont les échéances sont fortement concentrées en deux points extrêmes de la structure à terme des taux d’intérêt (50% d’échéance 5-6 ans et 50% d’échéance 25-30 ans) Convexité du portefeuille plus élevée qu’un Bullet ayant la même durée Portefeuille obligataire (stratégies de gestion active)
6
2. Basée sur le mouvement des courbes de taux d’intérêt (suite) c)Stratégie Ladder Composer le portefeuille avec des obligations dont les échéances sont réparties à des intervalles réguliers tout au long de la structure à terme des taux d’intérêt d)Stratégie Butterfly Combinaison des stratégies Bullet et Barbell Protection contre les petits changements parallèle de la courbe de taux (durée = 0) et contre les grands changements parallèles (on structure pour avoir une convexité positive) «Payoff» positif que la courbe soit affectée par un changement positif ou négatif Portefeuille obligataire (stratégies de gestion active)
7
3. Basée sur les écarts de taux 4. Basée sur les inefficiences; identification des obligations sous-évaluées (Bond picking) 5.Immunisation (lorsqu’il y a des sorties de fonds prévues, donc un passif futur) Rendre portefeuille insensible aux variations inattendues de la structure à terme (stratégie axée sur la gestion du risque) i.∆ niveau des taux d’intérêt ii.∆ pente de la structure à terme iii.∆ convexité de la structure à terme Stratégie possible si : Valeur marchande des actifs = Valeur marchande des passifs Durée des actifs = durée des passifs Convexité des actifs > convexité des passifs Protection contre Portefeuille obligataire (stratégies de gestion active)
8
Portefeuille obligataire (risque de taux d’intérêt d’une Banque) Gestion du risque de taux d’intérêt d’une Banque La position d’une banque peut être vue comme un portefeuille obligataire Risque issu du fait que la banque paie des intérêts sur son passif et reçoit de l’intérêt sur son actif, et du décalage entre les échéances des éléments de chaque catégorie. Une partie de l’actif et du passif est à court terme et donc sensible aux variations de taux d’intérêt. 2 mesures de l’exposition d’une banque au risque de taux d’intérêt : 1.Analyse des écarts 2.Analyse de la durée
9
Analyse des écarts Détermine la différence nette entre la valeur de l’actif productif d’intérêt à taux variable et celle du passif portant intérêt à taux variable (éléments de court terme) Écart positifÉcart négatif Exposition à un risque de Hausse des taux d’intérêt Baisse des taux d’intérêt ATV: Actif à taux variable ATF: Actif à taux fixe PTV: Passif à taux variable PTF : Passif à taux fixe Portefeuille obligataire (risque de taux d’intérêt d’une Banque)
10
Limites de l’analyse des écarts Fait abstraction de la valeur temporelle de l’argent Seulement une mesure partielle de l’exposition réelle au risque de taux d’intérêt Ignore la portion du changement de la valeur marchande, tient seulement compte du changement dans les revenus ou dépenses d’intérêt Suppose des changements parallèles de la structure de taux Ne tient pas compte de la croissance future et des modifications de la composition des activités Ignore la distribution des actifs et passifs à l’intérieur même d’un intervalle de temps donné Suppose que le moment où apparaît le risque et que la valeur de l’actif et passif échéant au cours d’une période donné sont fixes et déterminés Portefeuille obligataire (risque de taux d’intérêt d’une Banque)
11
Analyse de la durée d’une banque Actif → position longue dans une obligation → durée positive Passif → position courte dans une obligation → durée négative Gap de durée Indique la sensibilité de la banque par rapport au taux d’intérêt par unité d’actif ; calcul la durée nette: GAP D = V A D A – V P D P (en $) Duration Gap = GAP D / V A = D A – (V P / V A ) x D P (en années) Portefeuille obligataire (risque de taux d’intérêt d’une Banque)
12
Analyse de la durée d’une banque Durée positive Exposition au risque de hausse des taux d'intérêt Durée négative Exposition au risque de baisse des taux d'intérêt Limite d’une stratégie de couverture par la durée : Doit ajuster avec la convexité si de grandes variations surviennent Il faut constamment rebalancer; la durée variera selon l’évolution des taux d’intérêt Portefeuille obligataire (risque de taux d’intérêt d’une Banque)
13
Analyse de la durée de la Banque du Québec (Exemple) Actif → 70,55 MM $ durée → 8,58 Passif → 68,60 MM $ durée → 2,50 Gap de durée GAP D = V A D A – V P D P = 70,55 * 8,58 - 68,60 * 2,50 = 433,819 MM $ Duration Gap = GAP D / V A = 433,819 / 70,55 = 6,15 années → durée du «portefeuille» par unité d’actif Analyse de la durée de la Banque du Québec Durée positive de 6,15 années
14
Durée positive Exposition au risque de hausse des taux d'intérêt Niveau d’exposition actuel au risque de taux d’intérêt La position de cette banque est l’équivalent de détenir une position longue dans une obligation sans coupons d’une échéance de 6,15 années, donc exposée à un risque de hausse des taux. Pour réduire la durée à 0 ( car le mandat demande d’éliminer totalement le risque), on peut soit: Réduire la durée de l’actif de 6,08 (durée actuelle moins durée du passif = 8,58 – 2,50) Augmenter la durée du passif de 6,08 Profit Prix du sous-jacent (obligation zéro-coupon) Position longue dans une obligation
15
Couverture par contrats futures Nous optons pour la diminution de la durée de l’actif à 2,50 pour être parfaitement couvert On doit donc prendre une position courte dans un future sur obligation Position longue actuelle Position courte dans «Future» Profit Prix du sous-jacent (obligation zéro-coupon)
16
Couverture par contrats futures Nous optons pour la diminution de la durée de l’actif à 2,50 pour être parfaitement couvert On doit donc prendre une position courte dans un future sur obligation Selon le prix de ce future, nous pourrions déterminer combien de contrats nous devrions contracter pour se couvrir entièrement à l’aide de : D PTF = D A + D F x (N F x F P ) / V A où D PTF : durée du portefeuille d’actifs à obtenir (ici 2,5) D A : durée de l’actif présente D F : durée du passif (ici 2,5) N F : nombre de contrats nécessaires F P : prix du future V A : valeur marchande de l’actif Les opérations à effectuer sur le marché des contrats à terme seraient donc de prendre une position courte dans N F contrats «futures» pour une couverture complète.
17
Niveau d’exposition actuel au risque de taux d’intérêt La position de cette banque est l’équivalent de détenir une position courte dans une obligation sans coupon d’une échéance de x années, donc exposée à un risque de baisse des taux. Pour augmenter la durée à 0 ( car le mandat demande d’éliminer totalement le risque), on peut soit: Augmenter la durée de l’actif de x Diminuer la durée du passif de x Profit Prix du sous-jacent (obligation zéro-coupon) Position courte dans une obligation Durée négative Exposition au risque de baisse des taux d'intérêt Situation inverse
18
Couverture par contrats futures Nous optons pour l’augmentation de la durée de l’actif à ??? pour être parfaitement couvert On doit donc prendre une position longue dans un future sur obligation Profit Prix du sous-jacent (obligation zéro-coupon) Position longue actuelle Position longue dans «Future»
19
Couverture par contrats futures Nous optons pour l’augmentation de la durée de l’actif à 2,50 pour être parfaitement couvert On doit donc prendre une position longue dans un future sur obligation Selon le prix de ce future, nous pourrions déterminer combien de contrats nous devrions contracter pour se couvrir entièrement à l’aide de : D PTF = D A + D F x (N F x F P ) / V A où D PTF : durée du portefeuille d’actifs à obtenir (ici ???) D A : durée de l’actif présente D F : durée du passif (ici ???) N F : nombre de contrats nécessaires F P : prix du future V A : valeur marchande de l’actif Les opérations à effectuer sur le marché des contrats à termes seraient donc de prendre une position longue dans N F contrats «futures» pour une couverture complète.
20
Autres solutions de couverture Swap de taux d’intérêt sur obligations Contrat où deux parties s’engagent à s’échanger mutuellement de l’intérêt sur le notionnel stipulé au contrat → le contrat tire sa valeur de l’écart entre le taux fixe et le taux variable Risque de taux d’intérêt d’une Banque Position longue : Paie taux fixe Reçoit taux variable Position courte : Paie taux variable Reçoit taux fixe Pour la banque, c’est l’équivalent d’émettre (vendre) une obligation à taux fixe et d’acheter une obligation à taux variable Exposée au risque de hausse de taux (expliqué par durée) Pour la banque, c’est l’équivalent d’émettre (vendre) une obligation à taux variable et d’acheter une obligation à taux fixe Exposée au risque de baisse de taux (expliqué par durée)
21
Autres solutions de couverture Swap de taux d’intérêt (suite) Risque de taux d’intérêt d’une Banque Valeur d’un swap (suite) Position longue : Paie taux fixe Reçoit taux variable Valeur du swap = Valeur de l’obligation à coupons variables – Valeur de l’obligation à coupons fixes Valeur reçue Valeur payée Sachant que la durée d’une obligation à taux fixe est toujours supérieure à celle d’une obligation à taux variable, la valeur de l’obligation à taux fixe augmentera donc davantage que celle de l’obligation à taux variable suite à une baisse des taux d’intérêt, et une perte pourrait survenir. D’où l’exposition au risque de baisse taux d’intérêt avec une position longue dans un swap
22
Autres solutions de couverture Swap de taux d’intérêt (suite) Risque de taux d’intérêt d’une Banque Valeur d’un swap (suite) Position courte : Paie taux variable Reçoit taux fixe Valeur du swap = Valeur de l’obligation à coupons fixes – Valeur de l’obligation à coupons variables Valeur reçue Valeur payée Sachant que la durée d’une obligation à taux fixe est toujours supérieure à celle d’une obligation à taux variable, la valeur de l’obligation à taux fixe diminuera donc davantage que celle de l’obligation à taux variable suite à une hausse des taux d’intérêt, et une perte pourrait survenir. D’où l’exposition au risque de hausse taux d’intérêt avec une position courte dans un swap
23
Autres solutions de couverture Swap de taux d’intérêt (suite) Risque de taux d’intérêt d’une Banque Durée d’un swap Durée d’une position longue dans un swap = durée d’une obligation à coupons fixes – durée d’une obligation à coupons variables Durée d’une position courte dans un swap = durée d’une obligation à coupons variables – durée d’une obligation à coupons fixes Si la banque a une durée positive; elle doit prendre une position longue dans le swap pour augmenter la durée du passif jusqu’à égalité avec celle de l’actif. Si la banque a une durée négative; elle doit prendre une position courte dans le swap pour diminuer la durée du passif jusqu’à égalité avec celle de l’actif.
24
Autres solutions de couverture Swap de taux d’intérêt (suite) Risque de taux d’intérêt d’une Banque Application Duration Gap = D A – (V P / V A ) x D P où D P = ∑ (Valeur du passif i /Valeur totale passif) x durée du passif i Si la banque a une durée positive; elle doit prendre une position longue dans le swap pour augmenter la durée du passif jusqu’à égalité avec celle de l’actif. D P devient → D P avec SWAP = D P + Pswap/V P x D OF – Pswap/V P x D OV Positif parce qu’on paie, donc plus de passif Négatif parce qu’on reçoit, donc moins de passif Pswap : Notionnel à déterminer pour arriver à un Duration Gap de 0 V P : Valeur du passif D OF : Durée de l’obligation à taux fixe D OV : Durée de l’obligation à taux variable
25
Autres solutions de couverture Swap de taux d’intérêt (suite) Risque de taux d’intérêt d’une Banque Application Duration Gap = D A – (V P / V A ) x D P où D P = ∑ (Valeur du passif i /Valeur totale passif) x durée du passif i Si la banque a une durée négative; elle doit prendre une position courte dans le swap pour diminuer la durée du passif jusqu’à égalité avec celle de l’actif. D P devient → D P avec SWAP = D P - Pswap/V P x D OF + Pswap/V P x D OV Pswap : Notionnel à déterminer pour arriver à un Duration Gap de 0 V P : Valeur du passif D OF : Durée de l’obligation à taux fixe D OV : Durée de l’obligation à taux variable Négatif parce qu’on reçoit, donc moins de passif Positif parce qu’on paie, donc plus de passif
26
Autres solutions de couverture Option sur obligations Risque de taux d’intérêt d’une Banque Profit Prix du sous-jacent Permet de couvrir le risque d’un portefeuille obligataire (ici la Banque); Position longue dans un option d'achat pour se couvrir contre une baisse des taux d'intérêt et une augmentation des prix des obligations. Position longue dans une option de vente pour se couvrir contre une hausse des taux d'intérêt et une baisse des prix des obligations Long put Profit Prix du sous-jacent Long call
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.